首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
darknet 如何实现深度可分析卷积
2024-11-03
深度学习(七十)darknet 实现编写mobilenet源码
一.添加一个新的网络层 (1)parse.c文件中函数string_to_layer_type,添加网络层类型解析: if (strcmp(type, "[depthwise_convolutional]") == 0) return DEPTHWISE_CONVOLUTIONAL; (2)darknet.h文件中枚举类型LAYER_TYPE,添加网络层枚举类型: DEPTHWISE_CONVOLUTIONAL: (3)parse.c文件中函数parse_network_cfg添加网络
深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别
验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制作 2.卷积神经网络结构 3.训练参数保存与使用 4.注意事项 5.代码实现(python3.5) 6.运行结果以及分析 1.验证码的制作 深度学习一个必要的前提就是需要大量的训练样本数据,毫不夸张的说,训练样本数据的多少直接决定模型的预测准确度.而本节的训练样本数据(验证码:字母和数字组成)通过调
深度学习之卷积神经网络CNN及tensorflow代码实例
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂. 我们称 其连续的定义为: 其离散的定义为: 这两个式子有一个共同的特征: 这个特征有什么意义呢? 我们令,当n变化时,只需要平移这条直线 在上面的公式中,是一个函数,也是一个函数,例如下图所示即 下图即 根据卷积公式,求即将变号为,然后翻转变成,若我们计算的卷积值, 当n=0时: 当n=1时:
【神经网络与深度学习】卷积神经网络(CNN)
[神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合我认知的习惯,而不是单纯的将别的地方的知识复制过来,这样并起不到好的总结效果.相反,如果能够将自己的体会写下来,当有所遗忘时还能顺着当时总结的认识思路,重新"辨识"起来,所以,要总结,而不要搬运知识. 起初并不理解卷积神经的卷积与结构是什么,后来通过了一个比较好的例子才对卷积神经网络有了初
深度学习面试题24:在每个深度上分别卷积(depthwise卷积)
目录 举例 单个张量与多个卷积核在深度上分别卷积 参考资料 举例 如下张量x和卷积核K进行depthwise_conv2d卷积 结果为: depthwise_conv2d和conv2d的不同之处在于conv2d在每一深度上卷积,然后求和,depthwise_conv2d没有求和这一步,对应代码为: import tensorflow as tf # [batch, in_height, in_width, in_channels] input =tf.reshape( tf.constant([
深度学习面试题09:一维卷积(Full卷积、Same卷积、Valid卷积、带深度的一维卷积)
目录 一维Full卷积 一维Same卷积 一维Valid卷积 三种卷积类型的关系 具备深度的一维卷积 具备深度的张量与多个卷积核的卷积 参考资料 一维卷积通常有三种类型:full卷积.same卷积和valid卷积,下面以一个长度为5的一维张量I和长度为3的一维张量K(卷积核)为例,介绍这三种卷积的计算过程 一维Full卷积 Full卷积的计算过程是:K沿着I顺序移动,每移动到一个固定位置,对应位置的值相乘再求和,计算过程如下: 将得到的值依次存入一维张量Cfull,该张量就是I和卷积核K的ful
深度学习之卷积神经网络CNN及tensorflow代码实现示例
深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的
Full卷积、Same卷积、Valid卷积、带深度的一维卷积
转载和参考以下几个链接:https://www.cnblogs.com/itmorn/p/11177439.html; https://blog.csdn.net/jack__linux/article/details/91357456?utm_medium=distribute.pc_aggpage_search_result.none-task-blog-2~aggregatepage~first_rank_v2~rank_aggregation-2-91357456.pc_agg_rank
深度学习之卷积神经网络(CNN)
卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用.我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也比较高.TextRnn训练慢得像蜗牛(可能是我太没有耐心),以至于我直接中断了训练,到现在我已经忘记自己到底有没有成功训练一只TextRnn了. 卷积神经网络可以说是非常优美了,卷积操作(局部连接和权值共享)和池化操作,极大地减少了模型的参数,大大加快了模型训练的速度,才使得神经网络得以如此大规模的
深度学习之卷积神经网络(CNN)详解与代码实现(一)
卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目录 1.应用场景 2.卷积神经网络结构 2.1 卷积(convelution) 2.2 Relu激活函数 2.3 池化(pool) 2.4 全连接(full connection) 2.5 损失函数(softmax_loss) 2.6 前向传播(forward propagation) 2.7 反向
【转载】 深度学习之卷积神经网络(CNN)详解与代码实现(一)
原文地址: https://www.cnblogs.com/further-further-further/p/10430073.html --------------------------------------------------------------------------------------------------------------- 目录 1.应用场景 2.卷积神经网络结构 2.1 卷积(convelution) 2.2 Relu激活函数 2.3 池化(pool) 2
TensorFlow 深度学习笔记 卷积神经网络
Convolutional Networks 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 deep dive into images and convolutional models Convnet BackGround 人眼在识别图像时,往往从局部到全局 局部与局部之间联系往往不太紧密 我们不需要神经网络中的每个结点都掌握全局的知识,因此可以
深度学习-conv卷积
过滤器(卷积核) 传统的图像过滤器算子有以下几种: blur kernel:减少相邻像素的差异,使图像变平滑. sobel:显示相邻元素在特定方向上的差异. sharpen :强化相邻像素的差异,使图片看起来更生动. outline:也称为edge kernel,相邻像素相似亮度的像素点设成黑,有较大差异的设为白. 更多可参考 image-kernels 在线演示不同的卷积过滤器. CNN 卷积层 CNN做的事情不是提前决定好过滤器,而是把过滤器当成参数不断调整学习,学出合适的过滤器.卷积网络的
深度学习之卷积神经网络(CNN)详解与代码实现(二)
用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065.html 目录 1.踩过的坑(tensorflow) 2.tensorboard 3.代码实现(python3.5) 4.运行结果以及分析 1.踩过的坑(tensorflow) 上一章CNN中各个算法都是纯手工实现的,可能存在一些难以发现的问题,这也是准确率不高的一个原因,这章主要利用tensorf
深度学习:卷积神经网络(convolution neural network)
(一)卷积神经网络 卷积神经网络最早是由Lecun在1998年提出的. 卷积神经网络通畅使用的三个基本概念为: 1.局部视觉域: 2.权值共享: 3.池化操作. 在卷积神经网络中,局部接受域表明输入图像与隐藏神经元的连接方式.在图像处理操作中采用局部视觉域的原因是:图像中的像素并不是孤立存在的,每一个像素与它周围的像素都有着相互关联,而并不是与整幅图像的像素点相关,因此采用局部视觉接受域可以类似图像的此种特性. 另外,在图像数据中存在大量的冗余数据,因此在图像处理过程中需要对这些冗余数据进行处理
keystone 认证深度研究分析
一.Keystone Token深度概述 Keystone作为OpenStack项目基础认证模块,目前支持的token类型分别是uuid.pkiz.pki.fernet. 首先,简要叙述一下这四种类型的原理及其优缺点. uuid 比较简单,采用随机生成的序列(128位,以16进制表示)作为id,并构造token内容,需要持久化后端数据库支撑,比如MySQL数据库存储.优点,实现简单:缺点是持久化查询.每次访问都需要keystone相关服务进行认证. pki(pkiz) 基于cms算法,token
深度学习FPGA实现基础知识10(Deep Learning(深度学习)卷积神经网络(Convolutional Neural Network,CNN))
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一
深度学习之卷积神经网络CNN
转自:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的.当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢.例如一张黑白的28*28的手写数字图片时,输入层的神经元就是784个,如下图所示: 若在中间只使用一层隐藏层,参数w就有784*15=11760多个:若输入的是28*28带有颜色的RGB格式的手写数字图
【神经网络与深度学习】卷积神经网络-进化史:从LeNet到AlexNet
[卷积神经网络-进化史]从LeNet到AlexNet 本博客是[卷积神经网络-进化史]的第一部分<从LeNet到AlexNet> 如需转载,请附上本文链接:http://blog.csdn.net/cyh_24/article/details/51440344 更多相关博客请猛戳:http://blog.csdn.net/cyh_24 本系列博客是对刘昕博士的<CNN的近期进展与实用技巧>的一个扩充性资料. 主要讨论CNN的发展,并且引用刘昕博士的思路,对CNN的发展作一个更加详细
深度学习之卷积神经网络(CNN)学习
1.卷积神经网络中卷积的核心意义是什么?每一组卷集核 权重是一个抽特征的滤波器, 从卷集核的角度抽取特征 2.卷积神经网络很好的特性参数共享机制每一个神经元固定一组a x b x c(图像的通道数) 的参数w ,因此每一层网络的参数是 a x b x c x depth(神经元个数):a x b 代表卷集核比如(3 x 3):相比全连接的DNN 参数 w x h x c x depth 降低很多:例如:4 x 4 x 3 x 10(CNN) 418 x 418 x 3 x 10(DNN) 3.
深度学习中卷积层和pooling层的输出计算公式(转)
原文链接:https://blog.csdn.net/yepeng_xinxian/article/details/82380707 1.卷积层的输出计算公式class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)参数:in_channels(int) – 输入信号的通道out_channels(int) – 卷积产生的通道
热门专题
spring boot log4j2 冲突
mvn clean package报错
以下结构中哪个最适合当作stack
虚幻4游戏构建服务器教程
js判断鼠标是否停止移动
linux运行vue失败
家里的IP10.1.1.1
sonarqube 阿里
博客 next 图片放大
深度学习基础trick
head first html and css中文版pdf
keepalived新版本默认为非抢占模式
阿里云怎么设置端口访问权限
android 系统音乐控制
让div中的两个div并列
div标签 模拟实现table
C# winform 多线程锁
unity 网格读写内存增大
wm_char中文乱码
在用vue cli创建项目时为啥找不到module