pandas提供了set_index方法可以将DataFrame的列(多列)变成行索引,通过reset_index方法可以将层次化索引的级别会被转移到列里面. 1.DataFrame的set_index方法 data = pd.DataFrame(np.arange(,).reshape(,),index=["a","b","c"],columns=["A","B","C"]) prin
Spark获取DataFrame中列的方式--col,$,column,apply 1.官方说明 2.使用时涉及到的的包 3.Demo 原文作者:大葱拌豆腐 原文地址:Spark获取DataFrame中列的几种姿势–col,$,column,apply 1.官方说明 df("columnName") // On a specific DataFrame. col("columnName") // A generic column no yet associated
1.doc上的解释(https://spark.apache.org/docs/2.1.0/api/java/org/apache/spark/sql/Column.html) df("columnName") // On a specific DataFrame. col("columnName") // A generic column no yet associated with a DataFrame.
新建一个 dataFrame : val conf = new SparkConf().setAppName("TTyb").setMaster("local") val sc = new SparkContext(conf) val spark: SQLContext = new SQLContext(sc) import org.apache.spark.sql.functions.explode import org.apache.spark.sql.func
import numpy as np import pandas as pd This section will walk you(引导你) through the fundamental(基本的) mechanics(方法) of interacting(交互) with the data contained in a Series or DataFrame. -> (引导你去了解基本的数据交互, 通过Series, DataFrame). In the chapters to come, w