DeepFace基本框架 人脸识别的基本流程是: detect -> aligh -> represent -> classify 人脸对齐流程 分为如下几步: a. 人脸检测,使用6个基点 b. 二维剪切,将人脸部分裁剪出来 c. 67个基点,然后Delaunay三角化,在轮廓处添加三角形来避免不连续 d. 将三角化后的人脸转换成3D形状 e. 三角化后的人脸变为有深度的3D三角网 f. 将三角网做偏转,使人脸的正面朝前. g. 最后放正的人脸 h. 一个新角度的人脸(在论文中没有用到
0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地,然后提取构建预设人脸特征: 根据抠取的 / 已有的同一个人多张人脸图片提取128D特征值,然后计算该人的128D特征均值: 然后和摄像头中实时获取到的人脸提取出的特征值,计算欧氏距离,判定是否为同一张人脸: 人脸识别 / face recognition的说明: wikipedia 关于人脸识别系统 / fac
人脸照片自动生成游戏角色_ICCV2019论文解析 Face-to-Parameter Translation for Game Character Auto-Creation 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Shi_Face-to-Parameter_Translation_for_Game_Character_Auto-Creation_ICCV_2019_paper.pdf 摘要 角色定制系统是角色扮演