项目实现:GitHub 参考博客:CNN模型之ShuffleNet v1论文:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices v2论文:ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design 一.分组卷积 Group convolution是将输入层的不同特征图进行分组,然后采用不同的卷积核再对
对于分割网络,如果当成一个黑箱就是:输入一个3x1024x1024 输出4x1024x1024. 我没有使用二分类,直接使用了四分类. 分类网络使用了SegNet,没有加载预训练模型,参数也是默认初始化.为了加快训练,1024输入进网络后直接通过 pooling缩小到256的尺寸,等到输出层,直接使用bilinear放大4倍,相当于直接在256的尺寸上训练. import os import urllib import torch import torch.nn as nn import tor