首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
dlib detector( 参数 说明
2024-11-09
dlib库检测人脸使用方法与简单的疲劳检测应用
简介: dlib库是一个很经典的用于图像处理的开源库,shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的dat模型库,使用这个模型库可以很方便地进行人脸检测,并进行简单的应用. 简单实现一下疲劳检测功能,对视频中每帧图片检测眼睛长/宽的值是否大于阈值,连续超过50次则认为已经“睡着”,阈值的获取方式是:先采集30次数据,取其平均值作为默认的值.为了数据的准确,采集数据时应该平视摄像头. (不过仅通过检测眼睛是否闭合来判断是否疲劳存在很多误差
Python 3 利用 Dlib 19.7 实现摄像头人脸识别
0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地: 根据抠取的/已有的同一个人多张人脸图片提取128D特征值,然后计算该人的128D特征均值: 然后和摄像头中实时获取到的人脸提取出的特征值,计算欧氏距离,判定是否为同一张人脸: 效果如下: 图1 摄像头人脸识别效果gif 1.总体流程 先说下 人脸检测 (face detection) 和 人脸识别 (face
Dlib Python 检测人脸特征点 Face Landmark Detection
首先安装Dlib,Opencv库 Dlib安装链接:http://www.cnblogs.com/as3asddd/p/7237280.html 环境:Mac Sierra 10.12.1 Python 2.7.1 设置特征检测器,dlib有已经训练的好的需要下载,也可以自己根据需要训练 下载链接:http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 下载完之后解压,将路径送到dlib.shape_predictor()里
python dlib opencv 人脸68点特征检测
不得不感慨,现在现成的东西太多了,直接拿来用就行了 dlib安装(指定版本安装,避免踩坑) pip dlib中训练好的文件http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 下载解压到项目中 代码 import numpy as np import cv2 as cv import dlib detector = dlib.get_frontal_face_detector() predictor = dlib.shap
视频人脸检测——Dlib版(六)
往期目录 视频人脸检测--Dlib版(六) OpenCV添加中文(五) 图片人脸检测--Dlib版(四) 视频人脸检测--OpenCV版(三) 图片人脸检测--OpenCV版(二) OpenCV环境搭建(一) 更多更新,欢迎访问我的github:https://github.com/vipstone/faceai 前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧. 视
hog+svm+检测人(代替默认的参数)
#include <iostream>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/ml/ml.hpp>//#include <opencv2/gpu/gpu.hpp>#include <fstream>#include <iomanip> #include "opencv2/imgp
opencv+python+dlib人脸关键点检测、实时检测
安装的是anaconde3.python3.7.3,3.7环境安装dlib太麻烦, 在anaconde3中新建环境python3.6.8, 在3.6环境下安装dlib-19.6.1-cp36-cp36m-win_amd64.whl,下载地址:https://pypi.org/project/dlib/19.6.1/#files vscode更改配置 其中shape_predictor_68_face_landmarks.dat官方训练数据下载地址:http://dlib.net/files/,里
MFC双缓冲绘图实例
本人之前一直了解双缓冲绘图的基本原理,但是在研究很久之后才大概知道具体的使用过程,本文将详细介绍本人在实际项目中使用双缓冲绘图的案例. 实现功能:主界面显示某张包含人脸的图片,通过dlib detector获取到人脸上的68个关键点,绘制在图片上显示,然后通过鼠标拖动图片上的关键点,调整位置,之后保存.双缓冲主要能够解决拖动关键点时屏幕闪烁的问题,本文主要侧重在双缓冲的实现,其他功能概不介绍. 具体实现: 1.定义全局变量: CDC dc_mem://内存绘制dc CDC *dc://绘图dc
opencv图像融合(大头)
单纯的变大再覆盖上去,头部检测信息不够全,效果实在是太差,就不多说了,只是按照自己的思路玩一玩,没有达到抖音上那么好的效果 import cv2 as cv import numpy as np import dlib detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('../dlib/shape_predictor_68_face_landmarks.dat') def big_head(c
YOLO(5) YOLO2 代码讲解
运行 darknet-rect2.exe detector demo F:/2Project/YOLO/yolo2/3data/TestData/data/voc.data F:/2Project/YOLO/yolo2/3data/TestData/cfg/yolo-voc.cfg F:/2Project/YOLO/yolo2/3data/TestData/weight/yolo-voc.weights 开始 darknet.c detector参数进入run_detector函数中,在dete
自己训练SVM分类器进行HOG行人检测
正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体. 负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本). SVM使用的是OpenCV自带的CvSVM类. 首先计算正负样本图像的HOG描述子,组成一个特征向量矩阵,对应的要有一个指定每个特征向量的类别的类标向量,输入SVM中进行训练. 训练好的SVM分类器保存为XML文件,然后根据其中的
HOG目标检测
用HOG进行行人检测时,需要用训练好的支持向量机来对图片进行分类,在opencv中,支持向量机已经训练好,但自己来训练支持向量机才能更好的体会这一过程. 参考:http://blog.csdn.net/masikkk/article/category/2267523 (感谢这些无私奉献的博主) 下面是博主的代码. #include <iostream> #include <fstream> #include <opencv2/core/core.hpp> #includ
yolo源码解析(3):视频检测流程
代码在自己电脑中!!!!不在服务器 根据前文所说yolo代码逻辑: ├── examples │ ├── darknet.c(主程序) │ │── xxx1.c │ └── xxx2.c │ ├── include │ ├── darknet.h │ │ ├── Makefile │ │ └── src ├── yyy1.c ├── yyy2.h └──...... 视频检测入口时darknet.c文件. 输入视频检测命令,如: ./darknet detector demo cfg/coco.
写个神经网络,让她认得我`(๑•ᴗ•๑)(Tensorflow,opencv,dlib,cnn,人脸识别)
训练一个神经网络 能让她认得我 阅读原文 这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点意思的项目. 项目的github地址:github 喜欢的话就给个Star吧. 想要她认得我,就需要给她一些我的照片,让她记住我的人脸特征,为了让她区分我和其他人,还需要给她一些其他人的照片做参照,所以就需要两组数据集来让她学习,如果想让她多认识几个人,那多给她几组图片集学习就可以了.下面就开始让我
Python 3.6.3 利用 Dlib 19.7 和 opencv 实现人脸68点定位 进行人脸识别
0.引言 介绍利用Dlib官方给的人脸识别预测器"shape_predictor_68_face_landmarks.dat"进行68点标定,利用OpenCv进行图像化处理,在人脸上画出68个点,并标明序号. 1.开发环境 python: 3.6.3 dlib: 19.7 OpenCv, PIL, numpy 需要调用的库: import dlib #人脸识别的库dlib import numpy as np #数据处理的库numpy import cv2 #图像处理的库OpenCv
Python 3.6.3 利用Dlib 19.7库进行人脸识别
0.引言 自己在下载dlib官网给的example代码时,一开始不知道怎么使用,在一番摸索之后弄明白怎么使用了: 现分享下 face_detector.py 和 face_landmark_detection.py 这两个py的使用方法: 1.开发环境 python: 3.6.3 dlib: 19.7 2.py文件功能介绍 face_detector.py : 识别出图片文件中一张或多张人脸,并用矩形框框出标识出人脸: link: http://dlib.net/cnn_face_detecto
Python 3 利用 Dlib 19.7 和 sklearn机器学习模型 实现人脸微笑检测
0.引言 利用机器学习的方法训练微笑检测模型,给一张人脸照片,判断是否微笑: 使用的数据集中69张没笑脸,65张有笑脸,训练结果识别精度在95%附近: 效果: 图1 示例效果 工程利用python 3 开发,借助Dlib进行 人脸嘴部20个特征点坐标(40维特征)的提取, 然后根据这 40维输入特征 和 1维特征输出(1代表有微笑 / 0代表没微笑)进行ML建模, 利用几种机器学习模型进行建模,达到一个二分类(分类有/无笑脸)的目的,然后分析模型识别精度和性能,并且可以识别给定图片的人脸是
dlib下训练自己的物体检测器--手的检测
之前我们在Linux上安装了dlib(http://www.cnblogs.com/take-fetter/p/8318602.html),也成功的完成了之前的人脸检测程序, 今天我们来一起学习怎样使用dlib创建属于自己的简单的物体识别器(这里以手的检测为例,特别感谢https://handmap.github.io/dlib-classifier-for-object-detection/) imglab的介绍与安装 imglab是dlib提供的个工具,位于github dlib开源项目的t
Python学习--使用dlib、opencv进行人脸检测标注
参考自https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/ 在原有基础上有一部分的修改(image改为可选参数,若不填则为拍照后选取),如果有想深入学习的,可以去关注这位'吴克'先生的文章. 本文不涉及关于人脸检测的训练部分(虽然之后随着学习深入我会再发相关的随笔),只是简单的用轮子. 今天我们来使用dlib和opencv进行人脸的检测标注 首先安装opencv和dlib的方法 pip inst
使用dlib中的深度残差网络(ResNet)实现实时人脸识别
opencv中提供的基于haar特征级联进行人脸检测的方法效果非常不好,本文使用dlib中提供的人脸检测方法(使用HOG特征或卷积神经网方法),并使用提供的深度残差网络(ResNet)实现实时人脸识别,不过本文的目的不是构建深度残差网络,而是利用已经训练好的模型进行实时人脸识别,实时性要求一秒钟达到10帧以上的速率,并且保证不错的精度.opencv和dlib都是非常好用的计算机视觉库,特别是dlib,前面文章提到了其内部封装了一些比较新的深度学习方法,使用这些算法可以实现很多应用,比如人脸检测.
热门专题
centos vnc端口改到5900
easyui-datagridg列链接
网页 模态对话框 google
暴雪战网星际争霸Failed to connect
div 根据鼠标上下移动
PMP 第二章 项目生命周期与组织
tomcat下没有war包文件
centos加装硬盘步骤
linux apache怎么设置工作模式
thymeleaf 传参 js
string是number子类吗
一个页面两个form表单怎么知道回车提交是哪个form表单
winform 按钮设置背景图
windows 最大进程PID
python 模拟点击 窗口定位
hyperthread控制
怎么把nohup运行的java程序关闭
apollo 初始部门
win7系统安装ORACLE的ODBC
webview不能播放视频