首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
dlib detector( 参数 说明
2024-11-09
dlib库检测人脸使用方法与简单的疲劳检测应用
简介: dlib库是一个很经典的用于图像处理的开源库,shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的dat模型库,使用这个模型库可以很方便地进行人脸检测,并进行简单的应用. 简单实现一下疲劳检测功能,对视频中每帧图片检测眼睛长/宽的值是否大于阈值,连续超过50次则认为已经“睡着”,阈值的获取方式是:先采集30次数据,取其平均值作为默认的值.为了数据的准确,采集数据时应该平视摄像头. (不过仅通过检测眼睛是否闭合来判断是否疲劳存在很多误差
Python 3 利用 Dlib 19.7 实现摄像头人脸识别
0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地: 根据抠取的/已有的同一个人多张人脸图片提取128D特征值,然后计算该人的128D特征均值: 然后和摄像头中实时获取到的人脸提取出的特征值,计算欧氏距离,判定是否为同一张人脸: 效果如下: 图1 摄像头人脸识别效果gif 1.总体流程 先说下 人脸检测 (face detection) 和 人脸识别 (face
Dlib Python 检测人脸特征点 Face Landmark Detection
首先安装Dlib,Opencv库 Dlib安装链接:http://www.cnblogs.com/as3asddd/p/7237280.html 环境:Mac Sierra 10.12.1 Python 2.7.1 设置特征检测器,dlib有已经训练的好的需要下载,也可以自己根据需要训练 下载链接:http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 下载完之后解压,将路径送到dlib.shape_predictor()里
python dlib opencv 人脸68点特征检测
不得不感慨,现在现成的东西太多了,直接拿来用就行了 dlib安装(指定版本安装,避免踩坑) pip dlib中训练好的文件http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 下载解压到项目中 代码 import numpy as np import cv2 as cv import dlib detector = dlib.get_frontal_face_detector() predictor = dlib.shap
视频人脸检测——Dlib版(六)
往期目录 视频人脸检测--Dlib版(六) OpenCV添加中文(五) 图片人脸检测--Dlib版(四) 视频人脸检测--OpenCV版(三) 图片人脸检测--OpenCV版(二) OpenCV环境搭建(一) 更多更新,欢迎访问我的github:https://github.com/vipstone/faceai 前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧. 视
hog+svm+检测人(代替默认的参数)
#include <iostream>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/ml/ml.hpp>//#include <opencv2/gpu/gpu.hpp>#include <fstream>#include <iomanip> #include "opencv2/imgp
opencv+python+dlib人脸关键点检测、实时检测
安装的是anaconde3.python3.7.3,3.7环境安装dlib太麻烦, 在anaconde3中新建环境python3.6.8, 在3.6环境下安装dlib-19.6.1-cp36-cp36m-win_amd64.whl,下载地址:https://pypi.org/project/dlib/19.6.1/#files vscode更改配置 其中shape_predictor_68_face_landmarks.dat官方训练数据下载地址:http://dlib.net/files/,里
MFC双缓冲绘图实例
本人之前一直了解双缓冲绘图的基本原理,但是在研究很久之后才大概知道具体的使用过程,本文将详细介绍本人在实际项目中使用双缓冲绘图的案例. 实现功能:主界面显示某张包含人脸的图片,通过dlib detector获取到人脸上的68个关键点,绘制在图片上显示,然后通过鼠标拖动图片上的关键点,调整位置,之后保存.双缓冲主要能够解决拖动关键点时屏幕闪烁的问题,本文主要侧重在双缓冲的实现,其他功能概不介绍. 具体实现: 1.定义全局变量: CDC dc_mem://内存绘制dc CDC *dc://绘图dc
opencv图像融合(大头)
单纯的变大再覆盖上去,头部检测信息不够全,效果实在是太差,就不多说了,只是按照自己的思路玩一玩,没有达到抖音上那么好的效果 import cv2 as cv import numpy as np import dlib detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('../dlib/shape_predictor_68_face_landmarks.dat') def big_head(c
YOLO(5) YOLO2 代码讲解
运行 darknet-rect2.exe detector demo F:/2Project/YOLO/yolo2/3data/TestData/data/voc.data F:/2Project/YOLO/yolo2/3data/TestData/cfg/yolo-voc.cfg F:/2Project/YOLO/yolo2/3data/TestData/weight/yolo-voc.weights 开始 darknet.c detector参数进入run_detector函数中,在dete
自己训练SVM分类器进行HOG行人检测
正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体. 负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本). SVM使用的是OpenCV自带的CvSVM类. 首先计算正负样本图像的HOG描述子,组成一个特征向量矩阵,对应的要有一个指定每个特征向量的类别的类标向量,输入SVM中进行训练. 训练好的SVM分类器保存为XML文件,然后根据其中的
HOG目标检测
用HOG进行行人检测时,需要用训练好的支持向量机来对图片进行分类,在opencv中,支持向量机已经训练好,但自己来训练支持向量机才能更好的体会这一过程. 参考:http://blog.csdn.net/masikkk/article/category/2267523 (感谢这些无私奉献的博主) 下面是博主的代码. #include <iostream> #include <fstream> #include <opencv2/core/core.hpp> #includ
yolo源码解析(3):视频检测流程
代码在自己电脑中!!!!不在服务器 根据前文所说yolo代码逻辑: ├── examples │ ├── darknet.c(主程序) │ │── xxx1.c │ └── xxx2.c │ ├── include │ ├── darknet.h │ │ ├── Makefile │ │ └── src ├── yyy1.c ├── yyy2.h └──...... 视频检测入口时darknet.c文件. 输入视频检测命令,如: ./darknet detector demo cfg/coco.
写个神经网络,让她认得我`(๑•ᴗ•๑)(Tensorflow,opencv,dlib,cnn,人脸识别)
训练一个神经网络 能让她认得我 阅读原文 这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点意思的项目. 项目的github地址:github 喜欢的话就给个Star吧. 想要她认得我,就需要给她一些我的照片,让她记住我的人脸特征,为了让她区分我和其他人,还需要给她一些其他人的照片做参照,所以就需要两组数据集来让她学习,如果想让她多认识几个人,那多给她几组图片集学习就可以了.下面就开始让我
Python 3.6.3 利用 Dlib 19.7 和 opencv 实现人脸68点定位 进行人脸识别
0.引言 介绍利用Dlib官方给的人脸识别预测器"shape_predictor_68_face_landmarks.dat"进行68点标定,利用OpenCv进行图像化处理,在人脸上画出68个点,并标明序号. 1.开发环境 python: 3.6.3 dlib: 19.7 OpenCv, PIL, numpy 需要调用的库: import dlib #人脸识别的库dlib import numpy as np #数据处理的库numpy import cv2 #图像处理的库OpenCv
Python 3.6.3 利用Dlib 19.7库进行人脸识别
0.引言 自己在下载dlib官网给的example代码时,一开始不知道怎么使用,在一番摸索之后弄明白怎么使用了: 现分享下 face_detector.py 和 face_landmark_detection.py 这两个py的使用方法: 1.开发环境 python: 3.6.3 dlib: 19.7 2.py文件功能介绍 face_detector.py : 识别出图片文件中一张或多张人脸,并用矩形框框出标识出人脸: link: http://dlib.net/cnn_face_detecto
Python 3 利用 Dlib 19.7 和 sklearn机器学习模型 实现人脸微笑检测
0.引言 利用机器学习的方法训练微笑检测模型,给一张人脸照片,判断是否微笑: 使用的数据集中69张没笑脸,65张有笑脸,训练结果识别精度在95%附近: 效果: 图1 示例效果 工程利用python 3 开发,借助Dlib进行 人脸嘴部20个特征点坐标(40维特征)的提取, 然后根据这 40维输入特征 和 1维特征输出(1代表有微笑 / 0代表没微笑)进行ML建模, 利用几种机器学习模型进行建模,达到一个二分类(分类有/无笑脸)的目的,然后分析模型识别精度和性能,并且可以识别给定图片的人脸是
dlib下训练自己的物体检测器--手的检测
之前我们在Linux上安装了dlib(http://www.cnblogs.com/take-fetter/p/8318602.html),也成功的完成了之前的人脸检测程序, 今天我们来一起学习怎样使用dlib创建属于自己的简单的物体识别器(这里以手的检测为例,特别感谢https://handmap.github.io/dlib-classifier-for-object-detection/) imglab的介绍与安装 imglab是dlib提供的个工具,位于github dlib开源项目的t
Python学习--使用dlib、opencv进行人脸检测标注
参考自https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/ 在原有基础上有一部分的修改(image改为可选参数,若不填则为拍照后选取),如果有想深入学习的,可以去关注这位'吴克'先生的文章. 本文不涉及关于人脸检测的训练部分(虽然之后随着学习深入我会再发相关的随笔),只是简单的用轮子. 今天我们来使用dlib和opencv进行人脸的检测标注 首先安装opencv和dlib的方法 pip inst
使用dlib中的深度残差网络(ResNet)实现实时人脸识别
opencv中提供的基于haar特征级联进行人脸检测的方法效果非常不好,本文使用dlib中提供的人脸检测方法(使用HOG特征或卷积神经网方法),并使用提供的深度残差网络(ResNet)实现实时人脸识别,不过本文的目的不是构建深度残差网络,而是利用已经训练好的模型进行实时人脸识别,实时性要求一秒钟达到10帧以上的速率,并且保证不错的精度.opencv和dlib都是非常好用的计算机视觉库,特别是dlib,前面文章提到了其内部封装了一些比较新的深度学习方法,使用这些算法可以实现很多应用,比如人脸检测.
热门专题
net core 获取注入的实例
分析器错误 MvcApplication 找不到
java 支付宝对账单下载
echarts中如何动态柱状图如何修改系列的颜色
unity gpu优化
sql server 导出触发器
matlab查找有指定元素名称的文件夹
Java 根据子节点循环查询父级
python机器学习文本关键字提取
日期类Date,重载输入运算符">>
sql按周分组,并举例
mysql utf8mb4编码无法模糊查询
cmake foreach(d 判断
用nginx负载swagger后出现404
mfc edit控件初始化为汉字
文档中突出显示的快捷
java 怎么对接TL1连接
kegg通路富集分析图怎么看
nfs创建的新文件没有权限
IDirect3D9 后台