一.词项相似度 elasticsearch支持拼写纠错,其建议词的获取就需要进行词项相似度的计算:今天我们来通过不同的距离算法来学习一下词项相似度算法: 二.数据准备 计算词项相似度,就需要首先将词项向量化:我们可以使用以下两种方法 字符向量化,其将每个字符映射为一个唯一的数字,我们可以直接使用字符编码即可: import numpy as np def vectorize_words(words): lower_words = [word.lower() for word in words]
原文链接:https://www.elastic.co/blog/found-similarity-in-elasticsearch 原文 By Konrad Beiske 翻译 By 高家宝 译者按 该文虽然名为Elasticsearch中的相似度模型,实际上多数篇幅讲的都是信息检索邻域的通用相似度模型.其中涉及到具体实现的部分,Elasticsearch中相似度实际上是Lucene实现的,因此对于Lucene和Solr的开发者也具有参考意义. 导读 Elasticsearch当前支持替换默认
一.推荐系统简介 推荐系统主要基于对用户历史的行为数据分析处理,寻找得到用户可能感兴趣的内容,从而实现主动向用户推荐其可能感兴趣的内容: 从物品的长尾理论来看,推荐系统通过发掘用户的行为,找到用户的个性化需求,从而将长尾商品准确地推荐给需要它的用户,帮助用户发现那些他们感兴趣但很难发现的商品. 推荐系统使用的是基于邻域的算法,一类是基于用户的协同过滤算法,另一类是基于物品的协同过滤算法: 二.数据集准备 我们采用GroupLens提供的MovieLens数据集 These files conta