首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
epoch在神经网络里是什么意思
2024-10-26
3.对神经网络训练中Epoch的理解
代表的是迭代的次数,如果过少会欠拟合,反之过多会过拟合 EPOCHS 当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个 epoch. 然而,当一个 epoch 对于计算机而言太庞大的时候,就需要把它分成多个小块. 为什么要使用多于一个 epoch? 我知道这刚开始听起来会很奇怪,在神经网络中传递完整的数据集一次是不够的,而且我们需要将完整的数据集在同样的神经网络中传递多次.但是请记住,我们使用的是有限的数据集,并且我们使用一个迭代过程即梯度下降,优化学习过程和图示.因
经典卷积神经网络(LeNet、AlexNet、VGG、GoogleNet、ResNet)的实现(MXNet版本)
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷积神经网络(CNN)已经对卷积神经网络进行了详细的描述,这里为了学习MXNet的库,所以对经典的神经网络进行实现~加深学习印象,并且为以后的使用打下基础.其中参考的为Gluon社区提供的学习资料~ 1.简单LeNet的实现 def LeNet(): """ 较早的卷积神经网络 :
简单的卷积神经网络(CNN)的搭建
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现.与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量(biases)的神经元组成.每个神经元都接收一些输入,并做一些点积计算,输出是每个分类的分数,普通神经网络里的一些计算技巧到这里依旧适用. 卷积神经网络通常包含以下几种层: 卷积层(Convolutional layer),卷积神经网路中每层卷积层由若干卷积单
深度学习与CV教程(6) | 神经网络训练技巧 (上)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/265 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末
[DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工神经网络结构与人工神经网络可以完美分割任意数据的原理: 本节图片来源于斯坦福Andrew Ng老师coursea课件(此大神不多介绍,大家都懂) 在说明神经网络之前,先介绍一下神经网络的基础计算单元,感知器. 上图就是一个简单的感知器,蓝色是输入的样本,g(z)是激活函数,z=x1*w1+-,a=g(z) 这
【Todo】【转载】深度学习&神经网络 科普及八卦 学习笔记 & GPU & SIMD
上一篇文章提到了数据挖掘.机器学习.深度学习的区别:http://www.cnblogs.com/charlesblc/p/6159355.html 深度学习具体的内容可以看这里: 参考了这篇文章:https://zhuanlan.zhihu.com/p/20582907?refer=wangchuan <王川: 深度学习有多深, 学了究竟有几分? (一)> 笔记:神经网络的研究,因为人工智能的一位大牛Marvin Minsky的不看好,并且出书说明其局限性,而出现二十年的长期低潮. 在
神经网络:卷积神经网络CNN
一.前言 这篇卷积神经网络是前面介绍的多层神经网络的进一步深入,它将深度学习的思想引入到了神经网络当中,通过卷积运算来由浅入深的提取图像的不同层次的特征,而利用神经网络的训练过程让整个网络自动调节卷积核的参数,从而无监督的产生了最适合的分类特征.这个概括可能有点抽象,我尽量在下面描述细致一些,但如果要更深入了解整个过程的原理,需要去了解DeepLearning. 这篇文章会涉及到卷积的原理与图像特征提取的一般概念,并详细描述卷积神经网络的实现.但是由于精力有限,没有对人类视觉的分层以及机器学习等
【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识 为什么要用神经网络? 特征提取的高效性.
TensorFlow 实战之实现卷积神经网络
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeural Network,CNN) 19世纪60年代科学家最早提出感受野(ReceptiveField).当时通过对猫视觉皮层细胞研究,科学家发现每一个视觉神经元只会处理一小块区域的视觉图像,即感受野.20世纪80年代,日本科学家提出神经认知机(Neocognitron)的概念,被视为卷积神经网络最初
【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识 为什么要用神经网络? 特征提取的高效性.
BP神经网络算法推导及代码实现笔记zz
一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的,吭哧吭哧学总能学会,毕竟还有千千万万个算法等着你. 本文货很干,堪比沙哈拉大沙漠,自己挑的文章,含着泪也要读完! ▌二. 科普: 生物上的神经元就是接收四面八方的刺激(输入),然后做出反应(输出),给它一点就灿烂.仿生嘛,于是喜欢放飞自我的 某些人 就提出了人工神经网络.一切的基础-->人工神经单元,
使用python实现深度神经网络 3(转)
使用python实现深度神经网络 3 快速计算梯度的魔法--反向传播算法 快速计算梯度的魔法--反向传播算法 一.实验介绍 1.1 实验内容 第一次实验最后我们说了,我们已经学习了深度学习中的模型model(神经网络).衡量模型性能的损失函数和使损失函数减小的学习算法learn(梯度下降算法),还了解了训练数据data的一些概念.但是还没有解决梯度下降算法中如何求损失函数梯度的问题. 本次实验课,我们就来学习一个能够快速计算梯度的算法--反向传播算法(backpropogate algorith
什么是pytorch(3神经网络)(翻译)
神经网络 torch.nn 包可以用来构建神经网络. 前面介绍了 autograd包, nn 依赖于 autograd 用于定义和求导模型. nn.Module 包括layers(神经网络层), 以及forward函数 forward(input),其返回结果 output. 例如我们来看一个手写数字的网络: 卷积神经网络 这是一个简单的前馈神经网络.接受输入,向前传几层,然后输出结果. 一个神经网络训练的简单过程是: 定义一个具有可学习参数的神经网络. 输入数据集迭代 网络运算数据输入的计算结
详解卷积神经网络(CNN)
详解卷积神经网络(CNN) 详解卷积神经网络CNN 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer 全连接层Fully-connected layer 卷积神经网络架构 Layer Patterns Layer Sizing Patterns Case Studies 参考 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一
[AI]神经网络章2 神经网络中反向传播与梯度下降的基本概念
反向传播和梯度下降这两个词,第一眼看上去似懂非懂,不明觉厉.这两个概念是整个神经网络中的重要组成部分,是和误差函数/损失函数的概念分不开的. 神经网络训练的最基本的思想就是:先“蒙”一个结果,我们叫预测结果a,看看这个预测结果和事先标记好的训练集中的真实结果y之间的差距,然后调整策略,再试一次,这一次就不是“蒙”了,而是有依据地向正确的方向靠近.如此反复多次,一直到预测结果和真实结果之间相差无几,亦即|a-y|->0,就结束训练. 在神经网络训练中,我们把“蒙”叫做初始化,可以随机,也可以根据以
100天搞定机器学习|Day35 深度学习之神经网络的结构
100天搞定机器学习|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|Day7 K-NN 100天搞定机器学习|Day8 逻辑回归的数学原理 100天搞定机器学习|Day9-12 支持向量机 100天搞定机器学习|Day11 实现KNN 100天搞定机器学习|Day13-14 SVM的实现 100天搞定机器学习|Day15 朴素贝叶斯 100天搞定机器学习|Day1
【神经网络与深度学习】【计算机视觉】Fast R-CNN
转自:https://zhuanlan.zhihu.com/p/24780395?refer=xiaoleimlnote 首先声明:本文很多内容来自两个博客: RCNN, Fast-RCNN, Faster-RCNN的一些事目标检测--从RCNN到Faster RCNN 串烧 . 先回归一下: R-CNN ,SPP-net R-CNN和SPP-net在训练时pipeline是隔离的:提取proposal,CNN提取特征,SVM分类,bbox regression. Fast R-CNN 两大主要
paper 162:卷积神经网络(CNN)解析
卷积神经网络(CNN)解析: 卷积神经网络CNN解析 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer 全连接层Fully-connected layer 卷积神经网络架构 Layer Patterns Layer Sizing Patterns Case Studies 参考 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应
Deeplearning.ai课程笔记-神经网络和深度学习
神经网络和深度学习这一块内容与机器学习课程里Week4+5内容差不多. 这篇笔记记录了Week4+5中没有的内容. 参考笔记:深度学习笔记 神经网络和深度学习 结构化数据:如数据库里的数据 非结构化数据:hard to understand:如图像.文本 一. 深度学习的优势 算法.硬件计算能力的提高使神经网络运行速度变快 大数据(带labels的)使得神经网络精确度更高 在数据集不多的时候深度学习的优势并不是很明显,但是在大数据的情况下,辅助以好的算法和强计算能力,会使神经网络的运行速度和精确
关于 RNN 循环神经网络的反向传播求导
关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个普通的 RNN 神经网络如下图所示: 其中 \(x^{\langle t \rangle}\) 表示某一个输入数据在 \(t\) 时刻的输入:\(a^{\langle t \rangle}\) 表示神经网络在 \(t\) 时刻时的hidden state,也就是要传送到 \(t+1\) 时刻的值:\
从环境搭建到回归神经网络案例,带你掌握Keras
摘要:Keras作为神经网络的高级包,能够快速搭建神经网络,它的兼容性非常广,兼容了TensorFlow和Theano. 本文分享自华为云社区<[Python人工智能] 十六.Keras环境搭建.入门基础及回归神经网络案例>,作者:eastmount. 一.为什么要使用Keras Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow.Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计.调试.评估.应用和可视化 .其主要开发者是谷
热门专题
debian shell配置apt-get
docker通过startup.sh启动容器
idea中阅读spark源码
github获取交易日
win7 vnc 缓存口令
linux中maven自动下载jar命令
kubernetes将外部服务映射为内部服务
ApplicationPartManager卸载
clob字段表空间释放
vue 插件引用多 加载缓慢
ISE为什么无法添加顶层模块
使用过滤器拦截参数并解密的方法
js 社会信用代码校验
android 系统命令行设置系统时间
WinUI3和WPF
optee和trustzone
swift 感叹号的使用
使用CefSharp在.Net程序中嵌入Chrome浏览器
多个xl2tpd.conf文件
echarts词云不显示词