首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
fmri 的ICA分析
2024-08-27
独立成分分析(ICA)在fMRI数据处理时timecourse的理解
来源: http://blog.sciencenet.cn/blog-479412-434990.html 在处理fMRI数据时,使用空间ICA的方法.将一个四维的fMRI数据分解为空间pattern与时间序列的乘积. 其中每一pattern的时间序列是该pattern中强度(z-score值)最大的voxel的时间序列.该pattern中剩余voxel的时间序列与最大voxel的时间序列的相关性逐渐降低.对应在pattern中就是剩余voxel的z-score值降低. 因此pattern其
fMRI数据分析处理原理及方法(转载)
原文地址:http://www.cnblogs.com/minks/p/4889497.html 近年来,血氧水平依赖性磁共振脑功能成像(Blood oxygenation level-dependent functional magnetic resonance imaging, BOLD-fMRI)技术得到极快的发展,除了与扫描硬件.扫描技术的进步有关外,更得力于以图形图像等计算机科学为核心的相关学科的支持:图像数据的后处理技术成为fMRI中的关键环节 一.功能图像数据的性质 功能磁共振数据
fMRI数据分析处理原理及方法
来源: 整理文件的时候翻到的,来源已经找不到了囧感觉写得还是不错,贴在这里保存. 近年来,血氧水平依赖性磁共振脑功能成像(Blood oxygenation level-dependent functional magnetic resonance imaging, BOLD-fMRI)技术得到极快的发展,除了与扫描硬件.扫描技术的进步有关外,更得力于以图形图像等计算机科学为核心的相关学科的支持:图像数据的后处理技术成为fMRI中的关键环节 一.功能图像数据的性质 功能磁共振数据包括解剖(结构)
fMRI数据分析处理原理及方法————转自网络
fMRI数据分析处理原理及方法 来源: 整理文件的时候翻到的,来源已经找不到了囧感觉写得还是不错,贴在这里保存. 近年来,血氧水平依赖性磁共振脑功能成像(Blood oxygenation level-dependent functional magnetic resonance imaging, BOLD-fMRI)技术得到极快的发展,除了与扫描硬件.扫描技术的进步有关外,更得力于以图形图像等计算机科学为核心的相关学科的支持:图像数据的后处理技术成为fMRI中的关键环节 一.功能图像数据的性质
利用tca时间聚簇分析方法分析fmri数据
一.利用ica进行fmri数据分解时,在得到相互独立的成分后,这些成分的后续处理,其实是有很多文章可以做的.比如,对这些成分进行排序和选择.如果能够提出某种方法,能够自动地制造特征,并将这些特征与分解后的独立成分的特征进行比对,确定相应的结果.比如,激活与否.这也可以算做是fmri信号的盲分离算法. 二.tca分析,就是进行成分的特征提取与判别的. 这种方法的假设是:一个被试在一次run中,大概会得到150多个timepoint的数据.将大脑在这150多个时间点的峰值信号值提取出来,然后得到一个
利用pca分析fmri的生理噪声
A kernel machine-based fMRI physiological noise removal method 关于,fmri研究中,生理噪声去除的价值:一.现在随着技术的提升,高场fmri越来越得到应用.高场能够提高图像的信噪比,但是生理噪声却也会提升.所以在高场成像分析中,生理噪声的去除会成为一个不可忽略的因素.二.在静息态fmri中,功能网络的检测依赖于低频的大脑自发信号.这些信号和生理噪声,在频率上,是有着类似的特征.为了提高静息态分析的准确性,去除生理噪声,是必须的操作.
fmri分析工具:spm里的统计学 Introduction to SPM statistics
引言 Introduction 需要特别说明,spm是每一个体素为单位,计算统计量,进行t检验. 1.分别在每个体素上做方差分析; 2.对每个体素的方差分析结果,计算t检验统计量; 3.计算等同于t检验统计量的z值; 4.绘制一副t检验统计量map,或者z值map; 5.利用随机场理论,纠正统计检验结果的显著性水平. 命名说明 Naming of parts observation = a voxel value, in the voxel we are analysing, for one
对于利用ica进行fmri激活区识别的理解
首先,ica是一种探索性的方法,属于数据驱动的范畴. ica计算量很大,一般都是离线式计算. ica基于的猜想是,世界是加性的.在我们所研究的脑科学中,所采集到的BOLD信号,是由一些源信号所构成,更准确地说,是由这些源信号叠加而成的.也就是说,假设我们以每个体素为研究对象,那么每个体素的BOLD信号在每个时间点的数值,都是由很多个独立的源信号所组成.注意,在这里,我们对于ica的要求就是分离出的源信号是独立的. 那么,源信号来自于哪里呢? 来自于某个体素,来自于某个脑区,来自于分散在大脑皮层各
机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持与低维情形下相同的样本密度,所需要的样本数指数型增长.从下面的图可以直观体会一下.当维度很大样本数量少时,无法通过它们学习到有价值的知识:所以需要降维,一方面在损失的信息量可以接受的情况下获得数据的低维表示,增加样本的密度:另一方面也可以达到去噪
Topographic ICA as a Model of Natural Image Statistics(作为自然图像统计模型的拓扑独立成分分析)
其实topographic independent component analysis 早在1999年由ICA的发明人等人就提出了,所以不算是个新技术,ICA是在1982年首先在一个神经生理学的背景下提出的,而且在1980年前后大家都在忙着研究BP,所以对ICA研究的人都不多,在1990年前后才大量的爆发关于ICA的研究,现在ICA已经较为成熟和完善了.ICA的开始是假设成分间互相独立,但是却有些的确不独立,所以还是需要对这些成分进行分析,现在发现这个是因为在eccv 12年中看到有人用这个,
PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质
机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点,如何用一个超平面(直线/平面的高维推广)对所有样本进行恰当的表达? 事实上,若存在这样的超平面,那么它大概应具有这样的性质: 最近重构性 : 样本点到这个超平面的距离都足够近: 最大可分性:样本点在这个超平面上的投影能尽可能分开. 一般的,将特征量从n维降到k维: 以最近重构性为目标,PCA的目标
ICA (独立成分分析)
介绍 独立成分分析(ICA,Independent Component Correlation Algorithm)简介 X=AS X为n维观测信号矢量,S为独立的m(m<=n)维未知源信号矢量,矩阵A被称为混合矩阵. ICA的目的就是寻找解混矩阵W(A的逆矩阵),然后对X进行线性变换,得到输出向量U. U=WX=WAS 过程 编辑 (1)对输入数据进行中心化和白化预处理 X*=X-u 经过白化变换后的样本数据为 Z=Wz X* (2)从白化样本中求解出解混矩阵W 通过优化目标函数的方法得到W
ICA(独立成分分析)笔记
ICA又称盲源分离(Blind source separation, BSS) 它假设观察到的随机信号x服从模型,其中s为未知源信号,其分量相互独立,A为一未知混合矩阵. ICA的目的是通过且仅通过观察x来估计混合矩阵A以及源信号s. 大多数ICA的算法需要进行“数据预处理”(data preprocessing):先用PCA得到y,再把y的各个分量标准化(即让各分量除以自身的标准差)得到z.预处理后得到的z满足下面性质: z的各个分量不相关: z的各个分量的方差都为1. “ICA基本定理”:
独立成分分析 ICA 原理及公式推导 示例
独立成分分析(Independent component analysis) 前言 独立成分分析ICA是一个在多领域被应用的基础算法.ICA是一个不定问题,没有确定解,所以存在各种不同先验假定下的求解算法.相比其他技术,ICA的开源代码不是很多,且存在黑魔法–有些步骤并没有在论文里提到,但没有这些步骤是无法得到正确结果的. 本文给出一个ICA最大似然解法的推导,以及FastICA的python实现,限于时间和实际需求,没有对黑魔法部分完全解读,只保证FastICA实现能得到正确结果. 有兴趣的童
独立成分分析(ICA)的模拟实验(R语言)
本笔记是ESL14.7节图14.42的模拟过程.第一部分将以ProDenICA法为例试图介绍ICA的整个计算过程:第二部分将比较ProDenICA.FastICA以及KernelICA这种方法,试图重现图14.42. ICA的模拟过程 生成数据 首先我们得有一组独立(ICA的前提条件)分布的数据\(S\)(未知),然后经过矩阵\(A_0\)混合之后得到实际的观测值\(X\),即 \[ X= SA_0 \] 也可以写成 \[ S=XA_0^{-1} \] 用鸡尾酒酒会的例子来说就是,来自不同个体的
独立成分分析(Independent component analysis, ICA)
作者:桂. 时间:2017-05-22 12:12:43 链接:http://www.cnblogs.com/xingshansi/p/6884273.html 前言 今天群里冒出这样一个问题:群里谁有INFORMAX语音分离源程序?看到要程序的就头大,这是一个盲源分离问题,之前没有推导过,借此过一遍思路. 一.问题描述 经典的鸡尾酒宴会问题(cocktail party problem).假设在party中有n个人,他们可以同时说话,我们也在房间中一些角落里共放置了n个声音接收器(Microp
fmri 分析数据 fsl & spm 两大平台比对
基于下面这份ppt:Comparing SPM and FSL, by lChris Rorden fsl & spm都是免费的,都很受欢迎.spm更受欢迎. 两者的区别在于何时利用normalise 归一化操作. 二者的头动矫正算法是不同的: spm是基于variance指标,fsl是基于normalised correlation 指标.spm的头动,包含非刚体变换unwarp操作.fsl的会将头动参数传递给feat的统计模型中.spm的头动矫正,sophisticated(好,但是复杂),
利用cca进行fmri分析
在肖柯的硕士毕业论文中<基于CCA的fMRI时空模型数据处理方法的研究>,他的总体思路是利用cca提取出fmri图像在时间和空间上两个相关系数,也就是两个特征,然后利用pca,对这两个特征进行融合,得的一个综合的相关系数,然后利用这个综合的相关系数进行选取阈值,然后判别激活与否. 首先,他没有降噪. 其次,他有一个假设,就是信号发生体素具有空间局部性和时间局部性.所以,我们才有这样的假设,就是如果一个体素的时间cca系数较高,或者空间cca系数较高,那么,再或者空间-时间两者系数都较高,那么我
对于利用pca 和 cca 进行fmri激活区识别的理解
1.pca 抛开fmri研究这个范畴,我们有一个超长向量,这个超长向量在fmri研究中,就是体素数据.向量中的每个数值,都代表在相应坐标轴下的坐标值.这些坐标轴所组成的坐标系,其实是标准单位坐标系.向量如果乘以另外一个转换矩阵,我们可以得到这个向量在新坐标系下的坐标值.变换之后,新的向量维数就变了,一般是降低了,如果我们是以降维为考虑目标.如果把向量进行推广,成为矩阵,那么这个矩阵的每一列都代表一个向量,在具体的研究中,也就是一次采样数据.矩阵有多少列,就代表有多少次采样.在fmri研究中,如果
关于fmri数据分析的两大类,四种方法
关于fmri数据分析的两大类,四种方法: 数据驱动: tca:其实这种方法,主要是提取时间维的特征.如果用它来进行数据的分析,则必须要利用其他的数据方法,比如结合ICA. ica:作为pca的一般化实现.是一种结构化的方法,就像和小波.傅立叶类似.只不过,比他们要更一般化.小波和傅立叶主要是在频率域做分析,而ica提取出的成分是统计独立的.这些成分,可以理解为本质上有是独立的成分.这就已经超越了频域相同的范畴,更加一般化了. 聚类:什么意思呢.先找指标,特征.然后,剩余的方法,就完全和老冯的属性
热门专题
Mac 动画特效关闭
easyui datagrid 不能滚动
unity 地形参数
android studio打开自动下载sdk
response headers为本地的
PTA统计二叉树子结点个数
数组赋值给不同的combox combox每次选择都一样
String 多个换行符 替换
css表单中数据太长怎么调整
get the job you want原文及翻译
windows 伪造mac地址
poi读取 一行一行读取word
keepalivetimeout配置
shell 设置 字体颜色
移动端 上下左右滑动 冲突
matlab怎么计算图像的灰度平均值
opencv捕获高清usbcamera
vue中slot中的内容不占据高度
ubunut github怎么上传文件
使用alarm函数实现计时器的功能