前言 Python的pandas包提供的数据聚合与分组运算功能很强大,也很灵活.<Python for Data Analysis>这本书第9章详细的介绍了这方面的用法,但是有些细节不常用就容易忘记,遂打算把书中这部分内容总结在博客里,以便复习查看.根据书中的章节,这部分知识包括以下四部分: 1.GroupBy Mechanics(groupby技术) 2.Data Aggregation(数据聚合) 3.Group-wise Operation and Transformation(分组级运
import pandas as pd import numpy as np 分割-apply-聚合 大数据的MapReduce The most general-purpose GroupBy method is apply, which is the subject of the rest of this section. As illustrated in Figure 10-2, apply splits the object being manipulated into pieces,
今天帮同事测试,发现代码里有个好用的hive 函数: 1. collect_set 可以输出未包含在groupby里的字段.条件是,这个字段值对应于主键是唯一的. select a, collect_set(b)[0], count(*) -- 同时想输出每个主键对应的b字段 from ( select 'a' a, 'b' b from test.dual )a group by a; -- 根据a group by 2. concat_ws 和collect_set 一起可以把group b
Groupby - collection processing Iterator and Iterable have most of the most useful methods when dealing with collections. Fold, Map, Filter are probably the most common. But other very useful methods include grouped/groupBy, sliding, find, forall, fo
Linq 中按照多个值进行分组(GroupBy) .GroupBy(x => new { x.Age, x.Sex }) group emp by new { emp.Age, emp.Sex } into g // 实现多key分组的扩展函数版本 var sums = empList .GroupBy(x => new { x.Age, x.Sex }) .Select(group => new { Peo = group.Key, Count = group.Count() });