首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
guava令牌桶容纳的最大令牌数
2024-11-10
Guava-RateLimiter实现令牌桶控制接口限流方案
一.前言 对于一个应用系统来说,我们有时会遇到极限并发的情况,即有一个TPS/QPS阀值,如果超了阀值可能会导致服务器崩溃宕机,因此我们最好进行过载保护,防止大量请求涌入击垮系统.对服务接口进行限流可以达到保护系统的效果,一旦达到限制速率则可以拒绝服务.排队或等待.降级等处理. 二.常见限流方案 1.计数器法 原理:在单位时间段内,对请求数进行计数,如果数量超过了单位时间的限制,则执行限流策略,当单位时间结束后,计数器清零,这个过程周而复始,就是计数器法. 缺点:不能均衡限流,在一个单位时间的末
RateLimiter令牌桶算法
限流,是服务或者应用对自身保护的一种手段,通过限制或者拒绝调用方的流量,来保证自身的负载. 常用的限流算法有两种:漏桶算法和令牌桶算法 漏桶算法 思路很简单,水(请求)先进入到漏桶里,漏桶以一定的速度出水,当水流入速度过大会直接溢出,可以看出漏桶算法能强行限制数据的传输速率. 对于很多应用场景来说,除了要求能够限制数据的平均传输速率外,还要求允许某种程度的突发传输.这时候漏桶算法可能就不合适了,令牌桶算法更为适合. 令牌桶算法 原理是系统会以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则
QoS令牌桶工作原理
QoS的一个重要作用就是对port流量进行监管,也就是限制port流量.但QoS是怎样做到这点的呢?那就是QoS的令牌桶机制了.以下是在笔者刚刚出版的<Cisco/H3C交换机高级配置与管理技术手冊>一书中,经过笔者充分理解后的全面诠释,大家看一下能否够理解.http://book.360buy.com/10959197.html 6.3.3 QoS令牌桶工作原理 QoS中的流量监管(Traffic Policing)就是对流量进行控制,通过监督进入网络port的流量速率,对超出部分的流量进行
令牌桶、漏斗、冷启动限流在sentinel的应用
分布式系统为了保证系统稳定性,在服务治理的限流中会根据不同场景进行限流操作,常见的限流算法有: 令牌桶:可容忍一定突发流量的速率的限流,令牌桶算法的原理是系统以恒定的速率产生令牌,然后把令牌放到令牌桶中,令牌桶有一个容量,当令牌桶满了的时候,再向其中放令牌,那么多余的令牌会被丢弃:当想要处理一个请求的时候,需要从令牌桶中取出一个令牌,如果此时令牌桶中没有令牌,那么则拒绝该请求. 漏斗:固定速率限流,可以启动整流作用. 在分析sentinel限流之前,我们先看下sentinel是什么,官网说明如下
ASP.NET Core中使用令牌桶限流
在限流时一般会限制每秒或每分钟的请求数,简单点一般会采用计数器算法,这种算法实现相对简单,也很高效,但是无法应对瞬时的突发流量. 比如限流每秒100次请求,绝大多数的时间里都不会超过这个数,但是偶尔某一秒钟会达到120次请求,接着很快又会恢复正常,假设这种突发的流量不会对系统稳定性带来实质性的影响,则可以在一定程度上允许这种瞬时的突发流量,从而为用户带来更好的可用性体验.这就是令牌桶算法的用武之地. 该算法的基本原理是:有一个令牌桶,容量是X,每Y单位时间会向桶中放入Z个令牌,如果桶中的令牌数超
使用Redis实现令牌桶算法
在限流算法中有一种令牌桶算法,该算法可以应对短暂的突发流量,这对于现实环境中流量不怎么均匀的情况特别有用,不会频繁的触发限流,对调用方比较友好. 例如,当前限制10qps,大多数情况下不会超过此数量,但偶尔会达到30qps,然后很快就会恢复正常,假设这种突发流量不会对系统稳定性产生影响,我们可以在一定程度上允许这种瞬时突发流量,从而为用户带来更好的可用性体验.这就是使用令牌桶算法的地方. 令牌桶算法原理 如下图所示,该算法的基本原理是:有一个容量为X的令牌桶,每Y单位时间内将Z个令牌放入该桶.如
令牌桶在数据通信QoS流量监管中的应用
令牌桶(Tocken Bucket,以下简称TB)在流量监管(以下简称CAR)功能中完成对流量进行限速的作用.流量监管主要是应用与网络边缘,从而保证核心设备的正常数据处理. 在流量监管的处理过程中,首先报文被分类,如果报文是某类报文,规定了流量特性,则进入令牌桶中进行处理,如果令牌桶中有足够的令牌可以用来发送报文,则报文可以通过可以被继续发送下去,如果令牌桶中的令牌不满足报文的发送条件,则报文被丢弃.这样就可以对某类报文的流量进行控制. 图1:令牌桶在流量监管中的处理过程示意图 令牌桶按用户设定
coding++:RateLimiter 限流算法之漏桶算法、令牌桶算法--简介
RateLimiter是Guava的concurrent包下的一个用于限制访问频率的类 <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>18.0</version> </dependency> 限流: 每个API接口都是有访问上限的,当访问频率或者并发量超过其承受范围时候,我们就必须
限流10万QPS、跨域、过滤器、令牌桶算法-网关Gateway内容都在这儿
一.微服务网关Spring Cloud Gateway 1.1 导引 文中内容包含:微服务网关限流10万QPS.跨域.过滤器.令牌桶算法. 在构建微服务系统中,必不可少的技术就是网关了,从早期的Zuul,到现在的Spring Cloud Gateway,网关我们用的不可少. 今天我就将沉淀下来的所有与网关相关的知识,用一篇文章总结清楚,希望对爱学习的小伙伴们有所帮助. 本篇文章主要介绍网关跨域配置,网关过滤器编写,网关的令牌桶算法限流[每秒10万QPS] 首先我们来看什么是网关 1.2 什么是微
15行python代码,帮你理解令牌桶算法
本文转载自: http://www.tuicool.com/articles/aEBNRnU 在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送,令牌桶算法就实现了这个功能, 可控制发送到网络上数据的数目,并允许突发数据的发送. 什么是令牌 从名字上看令牌桶,大概就是一个装有令牌的桶吧,那么什么是令牌呢? 紫薇格格拿的令箭,可以发号施令,令行禁止.在计算机的世界中,令牌也有令行禁止的意思,有令牌,则相当于得到了进行操作的授权,没有令牌,就什么都不能做.
CIR,CBS,EBS,PIR,PBS傻傻分不清楚?看这里!—-揭秘令牌桶
概述 春暖花开的时候,大家都开着汽车外出旅游欣赏美丽的风景,却被堵在高速公路上,你是否为此感到痛苦?但如果有一种机制可以评估高速公路上的车流量.控制车流情况,确保进入高速公路的汽车都能在路上安全畅行,你是不是会觉得很开心? 与此相似,网络发生拥塞的时候,也是一件非常痛苦的事情,如图1和图2所示. 图1 网络拥塞场景1 图2 网络拥塞场景2 如果不限制用户发送的业务流量大小,大量不断突发的业务数据会使网络更加拥挤,严重时会出现网络拥塞,造成业务出现异常,同时也浪费网络资源,如图3和图4所示. 图3
限流之令牌桶算法——RateLimiter官方文档
原文链接 作者:Dimitris Andreou 译者:魏嘉鹏 校对:方腾飞 RateLimiter 从概念上来讲,速率限制器会在可配置的速率下分配许可证.如果必要的话,每个acquire() 会阻塞当前线程直到许可证可用后获取该许可证.一旦获取到许可证,不需要再释放许可证. 校对注:RateLimiter使用的是一种叫令牌桶的流控算法,RateLimiter会按照一定的频率往桶里扔令牌,线程拿到令牌才能执行,比如你希望自己的应用程序QPS不要超过1000,那么RateLimiter设置100
Redis令牌桶限流
一 .场景描述 在开发接口服务器的过程中,为了防止客户端对于接口的滥用,保护服务器的资源, 通常来说我们会对于服务器上的各种接口进行调用次数的限制.比如对于某个 用户,他在一个时间段(interval)内,比如 1 分钟,调用服务器接口的次数不能够 大于一个上限(limit),比如说 100 次.如果用户调用接口的次数超过上限的话,就直接拒绝用户的请求,返回错误信息. 服务接口的流量控制策略:分流.降级.限流等.本文讨论下限流策略,虽然降低了服务接口的访问频率和并发量,却换取服务接口和业务应用系
redis实现的简单令牌桶
这里给出的令牌桶是以redis单节点或者集群为中间件. 不过, 这里的实现比较简单, 主要提供两个函数, 一个用于消费令牌, 一个用于添加令牌. 这里, 消费令牌和添加令牌都是通过lua来保证原子性. 消费令牌的代码如下 : // FetchToken 用来获取某个key的一个令牌 func (acc *Accessor) FetchToken(key string) (bool, error) { /* * KEYS[1] 表示特定的key, 这个key是当前的令牌数 */ keyFetchS
【springcloud】2.eureka源码分析之令牌桶-限流算法
国际惯例原理图 代码实现 package Thread; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicLong; /** * @ProjectName: cutter-point * @Package: Thread * @ClassName: RateLimiter * @Autho
令牌桶算法实现API限流
令牌桶算法( Token Bucket )和 Leaky Bucket 效果一样但方向相反的算法,更加容易理解.随着时间流逝,系统会按恒定 1/QPS 时间间隔(如果 QPS=100 ,则间隔是 10ms )往桶里加入 Token(想象和漏洞漏水相反,有个水龙头在不断的加水),如果桶已经满了就不再加了.新请求来临时,会各自拿走一个 Token ,如果没有 Token 可拿了就阻塞或者拒绝服务. @Autowired private JedisClientService jedisClient;
coding++:高并发解决方案限流技术-使用RateLimiter实现令牌桶限流-Demo
RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率. 通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时间内的访问量,譬如一些第三方服务会对用户访问量进行限制:限制网速,单位时间内只允许上传下载多少字节等. guava的maven依赖 <dependency> <groupId>com.google.guava</groupId> <artifactId>guav
coding++:Semaphore—RateLimiter-漏桶算法-令牌桶算法
java中对于生产者消费者模型,或者小米手机营销 1分钟卖多少台手机等都存在限流的思想在里面. 关于限流 目前存在两大类,从线程个数(jdk1.5 Semaphore)和RateLimiter速率(guava) Semaphore:从线程个数限流 RateLimiter:从速率限流 目前常见的算法是漏桶算法和令牌算法 令牌桶算法.相比漏桶算法而言区别在于,令牌桶是会去匀速的生成令牌,拿到令牌才能够进行处理,类似于匀速往桶里放令牌 漏桶算法是:生产者消费者模型,生产者往木桶里生产数据,消费者按照
高并发解决方案限流技术-----使用RateLimiter实现令牌桶限流
1,RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率.通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时间内的访问量,譬如一些第三方服务会对用户访问量进行限制:限制网速,单位时间内只允许上传下载多少字节等. guava的maven依赖 <dependency> <groupId>com.google.guava</groupId> <artifactId>gua
漏桶、令牌桶限流的Go语言实现
限流 限流又称为流量控制(流控),通常是指限制到达系统的并发请求数. 我们生活中也会经常遇到限流的场景,比如:某景区限制每日进入景区的游客数量为8万人:沙河地铁站早高峰通过站外排队逐一放行的方式限制同一时间进入车站的旅客数量等. 限流虽然会影响部分用户的使用体验,但是却能在一定程度上保障系统的稳定性,不至于崩溃(大家都没了用户体验). 而互联网上类似需要限流的业务场景也有很多,比如电商系统的秒杀.微博上突发热点新闻.双十一购物节.12306抢票等等.这些场景下的用户请求量通常会激增,远远超过平时
热门专题
ffmpeg批量处理视频
ajax请求返回json字符
kubelet 重启证书
使用turtle库绘制一个六边形
mysql没有插入两个字段值相同更新
同于内置管理员账户的管理员批准模式
dokcer pull 解压失败
configuration 依赖注入
matlab二维卷积
icem导入二维模型失败
oracle 查sql历史执行记录
java将int转short
elements 源码
brew 安装第三方PHP
sql语句 alter table 批量操作
alluxio 配置
mysql clickhouse 字段对应
VMware 网络选择
ubuntu12.04升级到14.04
PHP rsa 解密不出java的加密结果