论文:Working hard to know your neighbor’s margins: Local descriptor learning loss 为什么介绍此文:这篇2018cvpr文章主要是从困难样本入手,提出的一个loss,简单却很有效,在图像匹配.检索.Wide baseline stereo等都做了大量详细实验,在真实任务中真正取得了state-of-the-art的结果.代码:https://github.com/DagnyT/hardnet .上一篇博客中的论文可以和
loss是训练集的损失值,val_loss是测试集的损失值 以下是loss与val_loss的变化反映出训练走向的规律总结: train loss 不断下降,test loss不断下降,说明网络仍在学习;(最好的) train loss 不断下降,test loss趋于不变,说明网络过拟合;(max pool或者正则化) train loss 趋于不变,test loss不断下降,说明数据集100%有问题;(检查dataset) train loss 趋于不变,test loss趋于不变,说明学
一,train loss与test loss结果分析4666train loss 不断下降,test loss不断下降,说明网络仍在学习; train loss 不断下降,test loss趋于不变,说明网络过拟合; train loss 趋于不变,test loss不断下降,说明数据集100%有问题; train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目; train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超
前言 最近刚开始接触机器学习,记录下目前的一些理解,以及看到的一些好文章mark一下 1.MINST数据集 MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字
这篇论文提出了一种新的局部描述子学习方法,有一些点值得学习,记录下来以供参考.文章中涉及了一些3D reconstruction.structure from 的知识,不是很了解,所以理解可能有偏颇. 一.介绍 基于网络学习的局部描述子在patch-based benchmark取得了很好的结果,但是在最近image-based 3D reconstruction的benchmarks上面没有得到泛化性能的验证.所以作者提出一种描述子学习方法,可以受益于数据生成,数据采样,以及损失函数.这三点一