第一阶段,基于User-Video图游历算法,2008年[1]. 在这个阶段,YouTube认为应该给用户推荐曾经观看过视频的同类视频,或者说拥有同一标签的视频.然而此时,YouTube的视频已是数千万量级,拥有标签的部分却非常小,所以如何有效的扩大视频标签,被其认为是推荐的核心问题.解决方案的核心有两块,一是基于用户共同观看记录构建的图结构(Video Co-View Graph): 二是基于此数据结构的算法,被称为吸附算法(Adsorption Algorithm). 图1.User-Vid