因为我所在的项目要用到最小二乘法拟合,所有我抽时间将C++实现的程序改为JAVA实现,现在贴出来,供大家参考使用./** * <p>函数功能:最小二乘法曲线拟合</p> * @param x 实型一维数组,长度为 n .存放给定 n 个数据点的 X 坐标 * @param y 实型一维数组,长度为 n .存放给定 n 个数据点的 Y 坐标 * @param n 变量.给定数据点的个数 * @param a 实型一维数组,长度为 m .返回 m-1 次拟合多项式的 m 个系数 * @
工业相机拍摄的图像中,由于摄像质量的限制,图像中的直线经过处理后,会表现出比较严重的锯齿.在这种情况下求取直线的倾角(其实就是直线的斜率),如果是直接选取直线的开始点和结束点来计算,或是用opencv自带的哈夫曼直线方法,都会引起较大的角度偏差,一般会达到好几度.误差这么大,显然达不到工控要求.后来尝试采取直线点集做最小二乘拟合,误差缩小到0.5以下.以下是算法的代码: //最小二乘拟合计算直线的倾角 int pointCount = pointVect.size(); if (pointCou
最佳拟合直线 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 在很多情况下,天文观测得到的数据是一组包含很大数量的序列点图象,每一点用x值和y值定义.这就可能需要画一条通过这些点的最佳拟合曲线. 为了避免只对个别数据分析,需要进行最佳曲线拟合.考虑N个数据点,它们的坐标是(X1,Y1),(X2,Y2)...,(XN,YN).假设这些值中的X是严格的精确值,Y的值是测量值(含有一些误差). 对于一个给定的X,如X1,对
1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*rand(1,size(y,2)); %%最小二乘拟合 xf=log(x); yf=yrand; xfa = [ones(1,size(xf,2));xf] w = inv(xfa*xfa')*xfa*yf';%直接拟合得到的结果 参考资料: 1.http://blog.csdn.net/lotus_
1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*rand(1,size(y,2)); %%最小二乘拟合 xf=log(x); yf=yrand; xfa = [ones(1,size(xf,2));xf] w = inv(xfa*xfa')*xfa*yf';%直接拟合得到的结果 参考资料: 1.http://blog.csdn.net/lotus_