首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
java TensorFlow 保存模型
2024-08-02
Tensorflow 保存模型 & 在java中调用
本节涉及: 保存TensorFlow 的模型供其他语言使用 java中调用模型并进行预测计算 一.保存TensorFlow 的模型供其他语言使用 如果用户选择“y” ,则执行下面的步骤: 判断程序执行目录下是否有 export 目录,如果有,调用 shutil 包中的 rmtress 函数将其删除,以免冲突 builder = tf .saved_model . builder . SavedModelBuilder ("export") ———— 用于生成保存神经网络模型的对象b
(原)tensorflow保存模型及载入保存的模型
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7198773.html 参考网址: http://stackoverflow.com/questions/41265035/tensorflow-why-there-are-3-files-after-saving-the-model 1. 保存模型 tensorflow中saver使用如下代码保存模型时(假设程序位于/home/xxx/test,模型保存在/home/xxx/test/model.下
131、TensorFlow保存模型
# tf.train.Saver类提供了保存和恢复模型的方法 # tf.train.Saver的构造函数 提供了save和恢复的参数选项 # Saver对象提供了方法来运行这些计算节点,制定了写和读的路径 # Saver会恢复所有在你模型当中已经定义的变量 # 如果你加载一个模型没有通知如果构建该模型的计算图 # TensorFlow 在二进制检查点文件中保存变量, 粗略地说, 将变量名映射到张量值 # Saving variable # 创建一个Saver使用tf.train.Saver()来
TF 保存模型为 .pb格式
将网络模型,图加权值,保存为.pb文件 write.py # -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import shutil import os.path export_dir = '../model/' if
『TensorFlow』模型保存和载入方法汇总
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称 功能说明 默认值 var_list Saver中存储变量集合 全局变量集合 reshape 加载时是否恢复变量形状 True sharded 是否将变量轮循放在所有设备上 True max_to_keep 保留最近检查点个数 5 restore_sequentially 是否按顺序恢复变量,模型
tensorflow 之模型的保存与加载(一)
怎样让通过训练的神经网络模型得以复用? 本文先介绍简单的模型保存与加载的方法,后续文章再慢慢深入解读. #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################ #File Name: saver.py #Brief: #Author: frank #Mail: frank0903@aliyun.com #Created Time:2018-06-22 22:12:52 ##################
TensorFlow笔记-模型的保存,恢复,实现线性回归
模型的保存 tf.train.Saver(var_list=None,max_to_keep=5) •var_list:指定将要保存和还原的变量.它可以作为一个 dict或一个列表传递. •max_to_keep:指示要保留的最近检查点文件的最大数量. 创建新文件时,会删除较旧的文件.如果无或0,则保留所有 检查点文件.默认为5(即保留最新的5个检查点文件.) saver = tf.train.Saver() saver.save(sess, "") 模型的恢复 恢复模型的方法是res
tensorflow:模型的保存和训练过程可视化
在使用tf来训练模型的时候,难免会出现中断的情况.这时候自然就希望能够将辛辛苦苦得到的中间参数保留下来,不然下次又要重新开始. 保存模型的方法: #之前是各种构建模型graph的操作(矩阵相乘,sigmoid操作等...) saver=tf.train.Saver()#生成saver with tf.Session() as sess: sess.run(tf.global_variables_initializer())#先对模型进行初始化 #然后将数据丢入模型进行训练blabla #训练完之
Tensorflow加载预训练模型和保存模型(ckpt文件)以及迁移学习finetuning
转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据. 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta
转载:tensorflow保存训练后的模型
训练完一个模型后,为了以后重复使用,通常我们需要对模型的结果进行保存.如果用Tensorflow去实现神经网络,所要保存的就是神经网络中的各项权重值.建议可以使用Saver类保存和加载模型的结果. 1.使用tf.train.Saver.save()方法保存模型 tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta', write_meta_graph
Python之TensorFlow的模型训练保存与加载-3
一.TensorFlow的模型保存和加载,使我们在训练和使用时的一种常用方式.我们把训练好的模型通过二次加载训练,或者独立加载模型训练.这基本上都是比较常用的方式. 二.模型的保存与加载类型有2种 1)需要重新建立图谱,来实现模型的加载 2)独家加载模型 模型的保存与训练加载: tf.train.Saver(<var_list>,<max_to_keep>) var_list: 指定要保存和还原的变量,作为一个dict或者list传递 max_to_keep: 指示要保留的最大检查
Tensorflow加载预训练模型和保存模型
转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件我们在checkpoint_dir目录下保存的文件结构如下: 1.1 meta文件MyModel.meta文件保存的是图结构,meta文件
Tensorflow Learning1 模型的保存和恢复
CKPT->pb Demo 解析 tensor name 和 node name 的区别 Pb 的恢复 CKPT->pb tensorflow的模型保存有两种形式: 1. ckpt:可以恢复图和变量,继续做训练 2. pb : 将图序列化,变量成为固定的值,,只可以做inference:不能继续训练 Demo def freeze_graph(input_checkpoint,output_graph): ''' :param input_checkpoint: :param output_g
【TensorFlow】TensorFlow基础 —— 模型的保存读取与可视化方法总结
TensorFlow提供了一个用于保存模型的工具以及一个可视化方案 这里使用的TensorFlow为1.3.0版本 一.保存模型数据 模型数据以文件的形式保存到本地: 使用神经网络模型进行大数据量和复杂模型训练时,训练时间可能会持续增加,此时为避免训练过程出现不可逆的影响,并验证训练效果,可以考虑分段进行,将训练数据模型保存,然后在继续训练时重新读取: 此外,模型训练完毕,获取一个性能良好的模型后,可以保存以备重复利用: 模型保存形式如下: 保存模型数据的基本方法: save_dir = 'mo
TensorFlow保存、加载模型参数 | 原理描述及踩坑经验总结
写在前面 我之前使用的LSTM计算单元是根据其前向传播的计算公式手动实现的,这两天想要和TensorFlow自带的tf.nn.rnn_cell.BasicLSTMCell()比较一下,看看哪个训练速度快一些.在使用tf.nn.rnn_cell.BasicLSTMCell()进行建模的时候,遇到了模型保存.加载的问题. 查找了一些博主的经验,再加上自己摸索,在这里做个笔记,总结经验.其中关键要素有以下3点: 1.需要保存哪些变量(tensor),就要给哪些变量取名字(即name='XXXXX').
【4】TensorFlow光速入门-保存模型及加载模型并使用
本文地址:https://www.cnblogs.com/tujia/p/13862360.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tensorflow开发基本流程 [2]TensorFlow光速入门-数据预处理(得到数据集) [3]TensorFlow光速入门-训练及评估 [4]TensorFlow光速入门-保存模型及加载模型并使用 [5]TensorFlow光速入门-图片分类完整代码 [6]TensorFlow光速入门-python模
TensorFlow保存和载入模型
首先定义一个tf.train.Saver类: saver = tf.train.Saver(max_to_keep=1) 其中,max_to_keep参数设定只保存最后一个参数,默认值是5,即保存最后5个模型,如果设置成0,训练过程中的所有模型都会被保存. 模型训练好以后,保存模型: saver.save(sess, ckpt_dir + "/nn_model.ckpt", global_step=1) 其中,sess是Session,ckpt_dir + "/nn_mode
tensorflow训练自己的数据集实现CNN图像分类2(保存模型&测试单张图片)
神经网络训练的时候,我们需要将模型保存下来,方便后面继续训练或者用训练好的模型进行测试.因此,我们需要创建一个saver保存模型. def run_training(): data_dir = 'C:/Users/wk/Desktop/bky/dataSet/' log_dir = 'C:/Users/wk/Desktop/bky/log/' image,label = inputData.get_files(data_dir) image_batches,label_batches = inp
Tensorflow中保存模型时生成的各种文件区别和作用
假如我们得到了如下的checkpoints, 上面的文件主要可以分成三类:一种是在保存模型时生成的文件,一种是我们在使用tensorboard时生成的文件,还有一种就是plugins这个文件夹,这个是使用capture tpuprofile工具生成的,该工具可以跟踪TPU的计算过程,并对你的模型性能进行分析,这里就不想详细介绍了.本文主要介绍前面两种文件的作用: tensorboard文件 events.out.tfevents.*...: 保存的就是你的accuracy或者loss在不同时刻的
tensorflow机器学习模型的跨平台上线
在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法优化的PMML文件大多数时候很笨拙,因此本文我们专门讨论下tensorflow机器学习模型的跨平台上线的方法. 1. tensorflow模型的跨平台上线的备选方案 tensorflow模型的跨平台上线的备选方案一般有三种:即PMML方式,tensorflow serving方式,以及跨语言API方
热门专题
java判断string数组中是否包含某个元素
请说明一下Thymeleaf的模板中,获取动态数据的方式
pip安装到指定环境
springboot查询数据库表的结果添加到另一个表
给定一个无序的数组,找出排序之后
node 复制文件夹
qdesigner设置按钮鼠标悬停状态
js正则表达式去掉回车空格
pdfbox 分页提取文本
python @用法
socket 只允许一个tcp
mac vi命令转义
docker 部署zookeeper 本地化映射
F103 待机唤醒后直接复位
zabbix5表达式
ttl刷机中兴b860av1.1机顶盒教程
Dllregisterserver调用失败
centos7 LVM 挂载 开机启动不生效
h2o 随机森林 离散变量
android addView外部变暗