首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
java TensorFlow 保存模型
2024-08-02
Tensorflow 保存模型 & 在java中调用
本节涉及: 保存TensorFlow 的模型供其他语言使用 java中调用模型并进行预测计算 一.保存TensorFlow 的模型供其他语言使用 如果用户选择“y” ,则执行下面的步骤: 判断程序执行目录下是否有 export 目录,如果有,调用 shutil 包中的 rmtress 函数将其删除,以免冲突 builder = tf .saved_model . builder . SavedModelBuilder ("export") ———— 用于生成保存神经网络模型的对象b
(原)tensorflow保存模型及载入保存的模型
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7198773.html 参考网址: http://stackoverflow.com/questions/41265035/tensorflow-why-there-are-3-files-after-saving-the-model 1. 保存模型 tensorflow中saver使用如下代码保存模型时(假设程序位于/home/xxx/test,模型保存在/home/xxx/test/model.下
131、TensorFlow保存模型
# tf.train.Saver类提供了保存和恢复模型的方法 # tf.train.Saver的构造函数 提供了save和恢复的参数选项 # Saver对象提供了方法来运行这些计算节点,制定了写和读的路径 # Saver会恢复所有在你模型当中已经定义的变量 # 如果你加载一个模型没有通知如果构建该模型的计算图 # TensorFlow 在二进制检查点文件中保存变量, 粗略地说, 将变量名映射到张量值 # Saving variable # 创建一个Saver使用tf.train.Saver()来
TF 保存模型为 .pb格式
将网络模型,图加权值,保存为.pb文件 write.py # -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import shutil import os.path export_dir = '../model/' if
『TensorFlow』模型保存和载入方法汇总
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称 功能说明 默认值 var_list Saver中存储变量集合 全局变量集合 reshape 加载时是否恢复变量形状 True sharded 是否将变量轮循放在所有设备上 True max_to_keep 保留最近检查点个数 5 restore_sequentially 是否按顺序恢复变量,模型
tensorflow 之模型的保存与加载(一)
怎样让通过训练的神经网络模型得以复用? 本文先介绍简单的模型保存与加载的方法,后续文章再慢慢深入解读. #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################ #File Name: saver.py #Brief: #Author: frank #Mail: frank0903@aliyun.com #Created Time:2018-06-22 22:12:52 ##################
TensorFlow笔记-模型的保存,恢复,实现线性回归
模型的保存 tf.train.Saver(var_list=None,max_to_keep=5) •var_list:指定将要保存和还原的变量.它可以作为一个 dict或一个列表传递. •max_to_keep:指示要保留的最近检查点文件的最大数量. 创建新文件时,会删除较旧的文件.如果无或0,则保留所有 检查点文件.默认为5(即保留最新的5个检查点文件.) saver = tf.train.Saver() saver.save(sess, "") 模型的恢复 恢复模型的方法是res
tensorflow:模型的保存和训练过程可视化
在使用tf来训练模型的时候,难免会出现中断的情况.这时候自然就希望能够将辛辛苦苦得到的中间参数保留下来,不然下次又要重新开始. 保存模型的方法: #之前是各种构建模型graph的操作(矩阵相乘,sigmoid操作等...) saver=tf.train.Saver()#生成saver with tf.Session() as sess: sess.run(tf.global_variables_initializer())#先对模型进行初始化 #然后将数据丢入模型进行训练blabla #训练完之
Tensorflow加载预训练模型和保存模型(ckpt文件)以及迁移学习finetuning
转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据. 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta
转载:tensorflow保存训练后的模型
训练完一个模型后,为了以后重复使用,通常我们需要对模型的结果进行保存.如果用Tensorflow去实现神经网络,所要保存的就是神经网络中的各项权重值.建议可以使用Saver类保存和加载模型的结果. 1.使用tf.train.Saver.save()方法保存模型 tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta', write_meta_graph
Python之TensorFlow的模型训练保存与加载-3
一.TensorFlow的模型保存和加载,使我们在训练和使用时的一种常用方式.我们把训练好的模型通过二次加载训练,或者独立加载模型训练.这基本上都是比较常用的方式. 二.模型的保存与加载类型有2种 1)需要重新建立图谱,来实现模型的加载 2)独家加载模型 模型的保存与训练加载: tf.train.Saver(<var_list>,<max_to_keep>) var_list: 指定要保存和还原的变量,作为一个dict或者list传递 max_to_keep: 指示要保留的最大检查
Tensorflow加载预训练模型和保存模型
转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件我们在checkpoint_dir目录下保存的文件结构如下: 1.1 meta文件MyModel.meta文件保存的是图结构,meta文件
Tensorflow Learning1 模型的保存和恢复
CKPT->pb Demo 解析 tensor name 和 node name 的区别 Pb 的恢复 CKPT->pb tensorflow的模型保存有两种形式: 1. ckpt:可以恢复图和变量,继续做训练 2. pb : 将图序列化,变量成为固定的值,,只可以做inference:不能继续训练 Demo def freeze_graph(input_checkpoint,output_graph): ''' :param input_checkpoint: :param output_g
【TensorFlow】TensorFlow基础 —— 模型的保存读取与可视化方法总结
TensorFlow提供了一个用于保存模型的工具以及一个可视化方案 这里使用的TensorFlow为1.3.0版本 一.保存模型数据 模型数据以文件的形式保存到本地: 使用神经网络模型进行大数据量和复杂模型训练时,训练时间可能会持续增加,此时为避免训练过程出现不可逆的影响,并验证训练效果,可以考虑分段进行,将训练数据模型保存,然后在继续训练时重新读取: 此外,模型训练完毕,获取一个性能良好的模型后,可以保存以备重复利用: 模型保存形式如下: 保存模型数据的基本方法: save_dir = 'mo
TensorFlow保存、加载模型参数 | 原理描述及踩坑经验总结
写在前面 我之前使用的LSTM计算单元是根据其前向传播的计算公式手动实现的,这两天想要和TensorFlow自带的tf.nn.rnn_cell.BasicLSTMCell()比较一下,看看哪个训练速度快一些.在使用tf.nn.rnn_cell.BasicLSTMCell()进行建模的时候,遇到了模型保存.加载的问题. 查找了一些博主的经验,再加上自己摸索,在这里做个笔记,总结经验.其中关键要素有以下3点: 1.需要保存哪些变量(tensor),就要给哪些变量取名字(即name='XXXXX').
【4】TensorFlow光速入门-保存模型及加载模型并使用
本文地址:https://www.cnblogs.com/tujia/p/13862360.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tensorflow开发基本流程 [2]TensorFlow光速入门-数据预处理(得到数据集) [3]TensorFlow光速入门-训练及评估 [4]TensorFlow光速入门-保存模型及加载模型并使用 [5]TensorFlow光速入门-图片分类完整代码 [6]TensorFlow光速入门-python模
TensorFlow保存和载入模型
首先定义一个tf.train.Saver类: saver = tf.train.Saver(max_to_keep=1) 其中,max_to_keep参数设定只保存最后一个参数,默认值是5,即保存最后5个模型,如果设置成0,训练过程中的所有模型都会被保存. 模型训练好以后,保存模型: saver.save(sess, ckpt_dir + "/nn_model.ckpt", global_step=1) 其中,sess是Session,ckpt_dir + "/nn_mode
tensorflow训练自己的数据集实现CNN图像分类2(保存模型&测试单张图片)
神经网络训练的时候,我们需要将模型保存下来,方便后面继续训练或者用训练好的模型进行测试.因此,我们需要创建一个saver保存模型. def run_training(): data_dir = 'C:/Users/wk/Desktop/bky/dataSet/' log_dir = 'C:/Users/wk/Desktop/bky/log/' image,label = inputData.get_files(data_dir) image_batches,label_batches = inp
Tensorflow中保存模型时生成的各种文件区别和作用
假如我们得到了如下的checkpoints, 上面的文件主要可以分成三类:一种是在保存模型时生成的文件,一种是我们在使用tensorboard时生成的文件,还有一种就是plugins这个文件夹,这个是使用capture tpuprofile工具生成的,该工具可以跟踪TPU的计算过程,并对你的模型性能进行分析,这里就不想详细介绍了.本文主要介绍前面两种文件的作用: tensorboard文件 events.out.tfevents.*...: 保存的就是你的accuracy或者loss在不同时刻的
tensorflow机器学习模型的跨平台上线
在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法优化的PMML文件大多数时候很笨拙,因此本文我们专门讨论下tensorflow机器学习模型的跨平台上线的方法. 1. tensorflow模型的跨平台上线的备选方案 tensorflow模型的跨平台上线的备选方案一般有三种:即PMML方式,tensorflow serving方式,以及跨语言API方
热门专题
jenkins 打包找不到文件
同级组件之间如何传值
exsi安装mac 无限重启
输出mysql命令执行结果到变量
完成请求时出现临时问题 发生未知错误1001
pcie中tag管理
Graphviz支持 markdown
autowired和lazy
golang源码交叉编译
mac连接服务器的ssh工具哪个好用
arcgis中lxp文件
c语言输出杨辉三角四种方法
php雇员管理登陆系统
sql server Schema怎么改
main方法 args 接收json类型
webgl 帧缓冲区转化成图片
Unity Animator 隐藏后导致状态机停止
vue element 上传图片限制大小200K
unity 安卓混合开发
Android AES CBC nopadding 解密