首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
kaldi转特征为文本
2024-10-21
[转]Kaldi语音识别
转:http://ftli.farbox.com/post/kaldizhong-wen-shi-bie Kaldi语音识别 1.声学建模单元的选择 1.1对声学建模单元加入位置信息 2.输入特征 3.区分性技术 4.多音字如何处理? 5.Noise Robust ASR 6.Deep Learning[DNN/CNN替换GMM] 7.在手机等资源受限设备 author:Feiteng Email:lifeiteng0422@gmail.com date:2014/08/10 Kaldi训练脚本
(6)文本挖掘(三)——文本特征TFIDF权重计算及文本向量空间VSM表示
建立文本数据数学描写叙述的过程分为三个步骤:文本预处理.建立向量空间模型和优化文本向量. 文本预处理主要採用分词.停用词过滤等技术将原始的文本字符串转化为词条串或者特点的符号串.文本预处理之后,每个文本的词条串被进一步转换为一个文本向量,向量的每一维相应一个词条,其值反映的是这个词条与这个文本之间的类似度.类似度有非常多不同的计算方法.所以优化文本向量就是採用最为合适的计算方法来规范化文本向量,使其能更好地应用于文本分类和文本聚类等方面. TFIDF算法 TF-IDF使得一个单词能尽量与文本在语
什么是机器学习的特征工程?【数据集特征抽取(字典,文本TF-Idf)、特征预处理(标准化,归一化)、特征降维(低方差,相关系数,PCA)】
2.特征工程 2.1 数据集 2.1.1 可用数据集 Kaggle网址:https://www.kaggle.com/datasets UCI数据集网址: http://archive.ics.uci.edu/ml/ scikit-learn网址:http://scikit-learn.org/stable/datasets/index.html#datasets 2.1.2 安装scikit-learn工具 pip3 install Scikit-learn==0.19.1 安装好之后可以通过
[转]kaldi中的特征提取
转:http://blog.csdn.net/wbgxx333/article/details/25778483 本翻译原文http://kaldi.sourceforge.net/feat.html,由@煮八戒翻译,@wbglearn校对和修改. 特征提取 简介 我们做特征提取和波形读取的这部分代码,其目的是为了得到标准的MFCC(译注:梅尔倒谱系数)和PLP(译注:感知线性预测系数)特征,设置合理的默认值但留了一部分用户最有可能想调整的选项(如梅尔滤波器的个数,最小和最大截止频率等等).这部
python - 实现文本分类[简单使用第三方库完成]
第三方库 pandas sklearn 数据集 来自于达观杯 训练:train.txt 测试:test.txt 概述 TF-IDF 模型提取特征值建立逻辑回归模型 代码 # _*_ coding:utf- _*_ # 简单文本分类实现 import time import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.feature_extraction.text import Coun
JavaWeb开发——软件国际化(文本元素国际化)
前几天围绕着JDBC编程进行了系统的学习.现在我们对Java程序数据库操作已经是轻车熟路了.也学会了使用各种框架来帮助我们简化编程. 今天是学习计划的第七天,虽然学习热情没有前几天高涨了.但是,写博客总结的习惯应该要坚持下去.废话不多说了. 今天的学习内容是JavaWeb开发--软件国际化. 软件的国际化:软件开发时,要使它能同时应对世界不同地区和国家的访问,并针对不同地区和国家的访问,提供相应的.符合来访者阅读习惯的页面或数据. 国际化又称为 i18n:internationalization
基于Text-CNN模型的中文文本分类实战 流川枫 发表于AI星球订阅
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文
基于Text-CNN模型的中文文本分类实战
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文
基于TextRank算法的文本摘要
本文介绍TextRank算法及其在多篇单领域文本数据中抽取句子组成摘要中的应用. TextRank 算法是一种用于文本的基于图的排序算法,通过把文本分割成若干组成单元(句子),构建节点连接图,用句子之间的相似度作为边的权重,通过循环迭代计算句子的TextRank值,最后抽取排名高的句子组合成文本摘要.本文介绍了抽取型文本摘要算法TextRank,并使用Python实现TextRank算法在多篇单领域文本数据中抽取句子组成摘要的应用. 介绍 文本摘要是自然语言处理(NLP)的应用之一,一定会对我们
Alink漫谈(十) :特征工程 之 特征哈希/标准化缩放
Alink漫谈(十) :特征工程之特征哈希/标准化缩放 目录 Alink漫谈(十) :特征工程之特征哈希/标准化缩放 0x00 摘要 0x01 相关概念 1.1 特征工程 1.2 特征缩放(Scaling) 1.3 特征哈希(Hashing Trick) 0x02 数据集 0x03 示例代码 0x04 标准化缩放 StandardScaler 4.1 StandardScalerTrainBatchOp 4.2 StatisticsHelper.summary 4.3 BuildStandard
Python数据科学手册-机器学习之特征工程
特征工程常见示例: 分类数据.文本.图像. 还有提高模型复杂度的 衍生特征 和 处理 缺失数据的填充 方法.这个过程被叫做向量化.把任意格式的数据 转换成具有良好特性的向量形式. 分类特征 比如房屋数据: 房价.面积.地点信息. 方案1:把分类特征用映射关系 编码成 整数 . {'Queen Anne': 1, 'Fremont': 2, 'Wallingford': 3}; 在scikit-learn中并不好,数值特征可以反映代数量.会产生 1<2<3的 方案2:使用独热编码 有效增加额外的
BW知识问答汇总
什么是sap的星型结构,能不能详细讲解一下? Cube的星型结构中SID技术的优点有哪些? 什么是BW的星型结构,与传统的星型结构的区别是什么? SAP的星型结构相对于传统的星型结构优势? Cube与DSO的效率问题,谁的效率更高一些呢? 标准DSO和写入优化DSO的Active表有什么不同? Cube的查询效率为什么会比DSO快呢? 写优化DSO的特点? 标准DSO需注意的问题 Cube的优化方法都有哪些啊? 如何优化InfoCube信息立方体 Cube优化方法中的Partition(分区)是
[Machine Learning] Learning to rank算法简介
声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要可以分为以下两类:相关度排序模型和重要性排序模型. 1.1 相关度排序模型(Relevance Ranking Model) 相关度排序模型根据查询和文档之间的相似度来对文档进行排序.常用的模型包括:布尔模型(Boolean Model),向量空间模型(Vector Space Model),隐语义
BW知识问答锦集
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将追究法律责任!原文链接:http://www.cnblogs.com/jiangzhengjun/p/4297954.html 什么是sap的星型结构,能不能详细讲解一下?... 3 Cube的星型结构中SID技术的优点有哪些?... 4 什么是BW的星型结构,与传统的星型结构的区别是什么?...
Query Designer:变量注意事项
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将追究法律责任!原文链接:http://www.cnblogs.com/jiangzhengjun/p/4297542.html 为某个特征设置交互变量时,最好将在特征限制窗口里设置: 不要在Default Values窗口中设置,因为在Default Values窗口(虽然检测时没有警告)创建的变
learning to rank
Learning to Rank入门小结 + 漫谈 Learning to Rank入门小结 Table of Contents 1 前言 2 LTR流程 3 训练数据的获取4 特征抽取 3.1 人工标注 3.2 搜索日志 3.3 公共数据集 5 模型训练 5.1 训练方法 5.1.1 Pointwise 5.1.2 Pairwise 5.1.3 Listwise 6 效果评估7 参考 6.1 NDCG(Normalized Discounted Cumulative Gain) 6.1.1 定
Andrew Ng机器学习公开课笔记–Principal Components Analysis (PCA)
网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Components Analysis (PCA), 比Factor Analysis更为直接,计算也简单些 参考,A Tutorial on Principal Component Analysis, Jonathon Shlens 主成分分析基于, 在现实中,对于高维的数据,其中有很多维都是扰动噪音,
WEB网页插件 如何实现 选择上传图片路径 【高级问题】
发表于 2010-10-22 12:11 | |只看楼主 按键精灵程序里面的WEB网页插件 如何实现 选择上传图片路径 我想在上传图片的选框设置图片路径为 C:\fakepath\001.jpg 网页元素详细分析得到数据为 选择图片前的数据 HTML标签(TAG) :INPUT类型(Type) :file索引(index):25 (全局索引:123)名称(Name) :_fma.ad._0.im 选择图片后的数据 HTML标签(TAG) :INPUT类型(Type) :file值(v
Web挖掘技术
一.数据挖掘 数据挖掘是运用计算机及信息技术,从大量的.不全然的数据集中获取隐含在当中的实用知识的高级过程.Web 数据挖掘是从数据挖掘发展而来,是数据挖掘技术在Web 技术中的应用.Web 数据挖掘是一项综合技术,通过从Internet 上的资源中抽取信息来提高Web 技术的利用效率,也就是从Web 文档结构和试用的集合中发现隐含的模式. 数据挖掘涉及的学科领域和方法非常多,有多种分类法. (1)依据挖掘对象分:关系数据库.面向对象数据库.空间数据库.时序数据库.DNA 数据库.多媒体数据
sed正则表达式
sed的正则匹配如何实现非贪婪? sed的正则用的是BREs/EREs,不支持非贪婪模式.当然有一些方法可以实现非贪婪,比如: $ echo abcOabcdOabc | sed 's/.*O//' 结果是abc: $ echo abcOabcdOabc | sed 's/[^O]*O//' 结果是abcdOacb,变相实现了非贪婪的匹配. 但如果是这种情况: <div>...</div>blabla<div>...</div> 如果想用sed去除前后的&l
Web采矿技术
一.数据挖掘 数据挖掘是运用计算机及信息技术,从大量的.不全然的数据集中获取隐含在当中的实用知识的高级过程.Web 数据挖掘是从数据挖掘发展而来,是数据挖掘技术在Web 技术中的应用.Web 数据挖掘是一项综合技术,通过从Internet 上的资源中抽取信息来提高Web 技术的利用效率,也就是从Web 文档结构和试用的集合中发现隐含的模式. 数据挖掘涉及的学科领域和方法非常多.有多种分类法. (1)依据挖掘对象分:关系数据库.面向对象数据库.空间数据库.时序数据库.DNA 数据库.多媒体数据
热门专题
Chrome 按钮下断点
redis缓存mysql架构
easyui 省略 提示
删除document节点
电源滤波电容PCB布线
命令行怎么登陆服务器后台
wpf matlab编程
描边动画shader
spring cloud微服务使用公共yml
autoplayDuration滑动时间为永久
visitParamExtractString 取数组
c# 正则判断是否是IP和端口
oracle查询字段中的逗号
windows server ftp服务器 公网
winform textbox文本过长设置下拉
onvif 获取摄像机地理位置
crypto-js 加密64位key
git pull指定分支的代码
scapy 同进抓包并分析
grep过滤oracle日志时间段