When I use Keras to predict behind a web service, it occurred an error. and the error message is like flowing: self._make_predict_function() File "/usr/local/lib/python3.4/dist-packages/keras/engine/training.py", line 679, in _make_predict_fun
catalogue . 训练集 . 数据预处理 . 神经网络模型设计(对话集 <-> 问题集) . 神经网络模型设计(问题集 <-> 回答集) . RNN神经网络 . 训练 . 效果验证 1. 训练集 Mary moved to the bathroom. John went to the hallway. Where Daniel went back to the hallway. Sandra moved to the garden. Where John moved to t
本人在写Django RESful API时,碰到一个难题,老出现,整合Keras,报如下错误:很纠结,探索找资料近一个星期,皇天不负有心人,解决了 Internal Server Error: /pic/analysis/ Traceback (most recent call last): File "D:\AI\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1064, in _run a
本文原出处(感谢作者提供):https://zhuanlan.zhihu.com/p/27101000 将keras模型在django中应用时出现的小问题 王岳王院长 10 个月前 keras 一个做深度学习的框架,可以训练深度学习的模型,这里后端使用的是 tensorflow django 一个 python 语言的 web 框架,可以做 web 应用 问题背景 项目需求是用深度学习训练一个文本分类的模型,然后在 web 应用中加载这个训练好的模型在利用模型对实时输入的文本进行分类,这样用户在
之前在看<Semi-supervised Sequence Learning>这篇文章的时候对seq2seq半监督的方式做文本分类的方式产生了一定兴趣,于是开始简单研究了seq2seq.先来简单说一下这篇paper的内容: 创立的新形式Sequence AutoEncoder LSTM(SA-LSTM),Pre-trained RNNs are more stable, generalize better, and achieve state-of-the-art results on var
1.对于简单的定制操作,可以通过使用layers.core.Lambda层来完成.该方法的适用情况:仅对流经该层的数据做个变换,而这个变换本身没有需要学习的参数. # 切片后再分别进行embedding和average pooling import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation,Reshape from keras.layers import m
问题来源于使用了 keras.utils.plot_model,报错内容为: 2018-08-29 08:58:21.937037: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA /home/you/Documents/workspace/Pycharm
最近在学习SSD的源码,其中有两个自定的层,特此学习一下并记录. import keras.backend as K from keras.engine.topology import InputSpec from keras.engine.topology import Layer import numpy as np class L2Normalization(Layer): ''' Performs L2 normalization on the input tensor with a l
参加比赛用到了keras,虽然之前用tensorflow,但是感觉tensorflow的确不太友好,api比较难读,然后就学习keras使用 随着深入,发现keras的api确实比较友好 跑了一些example和models: https://github.com/fchollet/keras 官网blog:Building powerful image classification models using very little data :从网络中提取特征和fine-tune网络,也有中文