Cannot interpret feed_dict key as Tensor: Tensor Tensor("Placeholder_8:0", shape=(3, 3, 128, 256), dtype=float32) is not an element of this graph. 后端我使用的是django框架,上传一张图片传入基于tensorflow的keras模型进行预测,重复预测时,报告上述错误.原因大概是第二次预测时,model底层tensorflow的sessio
1. 如何进行迁移 对模型和相应的数据进行.cuda()处理.通过这种方式,我们就可以将内存中的数据复制到GPU的显存中去.从而可以通过GPU来进行运算了. 1.1 判定使用GPU 下载了对应的GPU版本的Pytorch之后,要确保GPU是可以进行使用的,通过torch.cuda.is_available()的返回值来进行判断.通过torch.cuda.device_count()可以获得能够使用的GPU数量.其他就不多赘述了. 常常通过如下判定来写可以跑在GPU和CPU上的通用模型: if t
1.首先官网上下载libtorch,放到当前项目下 2.将pytorch训练好的模型使用torch.jit.trace导出为.pt格式 import torch from skimage import io, transform, color import numpy as np import os import torch.nn.functional as F import warnings warnings.filterwarnings("ignore") device = tor