检测图片是否模糊有很多方法(这篇文章review了36种),比如FFT和variation of Laplacian等,前者在操作到时候需要定义高频的量有多低和多高来区分图片是模糊的,操作起来比较麻烦:而后者可以输出一个浮点数来代表图片的模糊程度. 这里我们用的方法为Pech-Pacheco在2000年提出的Laplacian方法(具体可以查看这篇文章).Laplacian方法能够进行这项工作的原因是Laplacian算子是用来衡量图片的二阶导,能够强调图片中密度快速变化的区域,也就是边界,故常
DoG(Difference of Gaussian) DoG (Difference of Gaussian)是灰度图像增强和角点检测的方法,其做法较简单,证明较复杂,具体讲解如下: Difference of Gaussian(DOG)是高斯函数的差分.我们已经知道可以通过将图像与高斯函数进行卷积得到一幅图像的低通滤波结果,即去噪过程,这里的Gaussian和高斯低通滤波器的高斯一样,是一个函数,即为正态分布函数. 那么difference of Gaussian 即高斯函数差分是两幅高斯图