目的 1.查找NaN值(定位到哪一列.在列的哪个索引位置) 2.填充NaN值(向上填充.向下填充.线性填充等) 3.过滤NaN值 构建简单的Dataframe数据结构环境 import pandas as pd import numpy as np #在df中nan和None都会被自动填充为NaN df=pd.DataFrame({'a':[np.nan,1,2,3],'b':[None,5,6,7],'c':[8,9,10,11]}) print(df) '''结果 a b c 0 NaN N
一:改变索引 reindex方法对于Series直接索引,对于DataFrame既可以改变行索引,也可以改变列索引,还可以两个一起改变. 1)对于Series In [2]: seri = pd.Series([4.5,7.2,-5.3,3.6],index = ['d','b','a','c']) In [3]: seri Out[3]: d 4.5 b 7.2 a -5.3 c 3.6 dtype: float64 In [4]: seri1 = seri.reindex(['a','b',
<利用python进行数据分析>一书的第五章源码与读书笔记 直接上代码 # -*- coding:utf-8 -*-# <python for data analysis>第五章, pandas基础# 高级数据结构与操作工具 import pandas as pdimport numpy as npimport time start = time.time()# pandas的数据结构, series and dataframe# 1.series,类似一维数据, 一个字典,建立了
Chapter4 Building Good Training Sets – Data Preprocessing 4.1 Dealing with missing data 如何判断数据框内的数据是否有空值呢? import pandas as pd from io import StringIO csv_data = '''A, B, C, D 1.0,2.0,3.0,4.0 5.0,6.0,,8.0 10.0,11.0,12.0,''' df = pd.read_csv(StringIO(
pandas库的数据类型运算 算数运算法则 根据行列索引,补齐运算(不同索引不运算,行列索引相同才运算),默认产生浮点数 补齐时默认填充NaN空值 二维和一维,一维和0维之间采用广播运算(低维元素与每一个高维元素运算) 采用 +-*/符号的二元运算会产生新的对象 a = pd.DataFrame(np.arange(12).reshape(3,4)) a b = pd.DataFrame(np.arange(20).reshape(4,5)) b # 维度相同,行列内元素个数不同的运算,自动补齐