首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
logistic回归的发展历程
2024-08-31
logistic回归介绍以及原理分析
1.什么是logistic回归? logistic回归虽然说是回归,但确是为了解决分类问题,是二分类任务的首选方法,简单来说,输出结果不是0就是1 举个简单的例子: 癌症检测:这种算法输入病理图片并且应该辨别患者是患有癌症(1)或没有癌症(0) 2.logistic回归和线性回归的关系 逻辑回归(Logistic Regression)与线性回归(Linear Regression)都是一种广义线性模型(generalized linear model). 逻辑回归假设因变量 y 服从二项分布,
SPSS数据分析—二分类Logistic回归模型
对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能对连续变量进行分析. 使用线性回归模型可以解决上述的部分问题,但是传统的线性模型默认因变量为连续变量,当因变量为分类变量时,传统线性回归模型的拟合方法会出现问题,因此人们继续发展出了专门针对分类变量的回归模型.此类模型采用的基本方法是采用变量变换,使其符合传统回归模型的要求.根据变换的方法不同也就衍
机器学习之三:logistic回归(最优化)
一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大.如果非要应用进入,可以使用logistic回归. logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数g(z)将最为假设函数来预测.g(z)可以将连续值映射到0和1上. logistic回归的假设函数如下,线性回归假设函数只是. logistic回归用来分类0/1问题,也就是预测结果属于0或者1的二值分类问题.这里假设了二值满足伯努利分布,也就是 当然假设它满
远程过程调用发展历程 WebAPI GRPC Hprose
作者:马秉尧链接:https://www.zhihu.com/question/23299132/answer/109978084来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. RPC(远程过程调用)是什么 简单的说,RPC就是从一台机器(客户端)上通过参数传递的方式调用另一台机器(服务器)上的一个函数或方法(可以统称为服务)并得到返回的结果. RPC 会隐藏底层的通讯细节(不需要直接处理Socket通讯或Http通讯) RPC 是一个请求响应模型.客户端发起请求
【转载】logistic回归
原文地址:https://www.cnblogs.com/zichun-zeng/p/3824745.html 1. logistic回归与一般线性回归模型的区别: (1) 线性回归的结果变量 与因变量或者反应变量与自变量之间的关系假设是线性的,而logistic回归中 两者之间的关系是非线性的: (2) 前提假设不同,在线性回归中,通常假设,对于自变量x的某个值,因变量Y的观测值服从正态分布,但在logistic回归中,因变量Y 服从二项分布或者多项分布: (3) lo
数据分析logistic回归与时间序列
logistics回归 1.影响关系研究是所有研究中最为常见的. 2.当y是定量数据时,线性回归可以用来分析影响关系. 3.如果现在想对某件事情发生的概率进行预估,比如一件衣服的是否有人想购买? 这里的Y是"是否愿意购买",属于分类数据,所以不能使用回归分析. 4.如果Y为定类数据,研究影响关系,选择logistics回归分析. 哑变量 1.哑变量(dummy var iable) 也称虚拟变量. 2.用数字代码表示的定性自变量. 3.哑变量可有不同的水平: (1).只有两个水平的哑变
C#与C++的发展历程第三 - C#5.0异步编程巅峰
系列文章目录 1. C#与C++的发展历程第一 - 由C#3.0起 2. C#与C++的发展历程第二 - C#4.0再接再厉 3. C#与C++的发展历程第三 - C#5.0异步编程的巅峰 C#5.0作为第五个C#的重要版本,将异步编程的易用度推向一个新的高峰.通过新增的async和await关键字,几乎可以使用编写同步代码的方式来编写异步代码. 本文将重点介绍下新版C#的异步特性以及部分其他方面的改进.同时也将介绍WinRT程序一些异步编程的内容. C# async/await异步编程 写as
神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里的循环神经网络,无奈理论太艰深,只能从头开始开始慢慢看,因此产生写一个项目的想法,把机器学习和深度学习里关于分类的算法整理一下,按照原理写一些demo,方便自己也方便其他人.项目地址:https://github.com/LiuRoy/classfication_demo,目前实现了逻辑回归和神经网
Linux实战教学笔记03:操作系统发展历程及系统版本选择
标签(空格分隔): Linux实战教学笔记-陈思齐 第1章 Linux简介 1.1 什么是操作系统? 简单讲:操作系统就是一个人与计算机硬件的中介. 操作系统,英文名称Operating System,简称OS,是计算机系统中必不可少的基础系统软件,它是应用程序运行以及用户操作必备的基础环境支撑,是计算机系统的核心. 操作系统的作用是管理和控制计算机系统中的硬件和软件资源,例如,它负责直接管理计算机系统的各种硬件资源,如对CPU,内存,磁盘等的管理,同时对系统资源供需的优先次序进行管理.操作系统
C#与C++的发展历程第一 - 由C#3.0起
俗话说学以致用,本系列的出发点就在于总结C#和C++的一些新特性,并给出实例说明这些新特性的使用场景.前几篇文章将以C#的新特性为纲领,并同时介绍C++中相似的功能的新特性,最后一篇文章将总结之前几篇没有介绍到的C++11的新特性. C++从11开始被称为现代C++(Modern C++)语言,开始越来越不像C语言了.就像C#从3.0开始就不再像Java了.这是一种超越,带来了开发效率的提高. 一种语言的特性一定是与这种语言的类型和运行环境是分不开的,所以文章中说C#的新特性其中也包括新的.NE
C#与C++的发展历程第二 - C#4.0再接再厉
系列文章目录 1. C#与C++的发展历程第一 - 由C#3.0起 2. C#与C++的发展历程第二 - C#4.0再接再厉 开始本系列的第二篇,这篇文章中将介绍C#4.0中一些变化,如C++有类似功能也将一并介绍.个人感觉C#4.0中增加的语言方面的特性不是很多,可能是这个时期都在着力完成随之发布的新的4.0版的CLR.总体来说C#4.0中有4个方面的特性.下面依次介绍: C#4.0 (.NET Framework 4.0, CLR 4.0) C# 动态类型 在诸如Javascript这样的脚
机器学习——Logistic回归
1.基于Logistic回归和Sigmoid函数的分类 2.基于最优化方法的最佳回归系数确定 2.1 梯度上升法 参考:机器学习--梯度下降算法 2.2 训练算法:使用梯度上升找到最佳参数 Logistic回归梯度上升优化算法 def loadDataSet(): dataMat = []; labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataM
logistic回归
logistic回归 回归就是对已知公式的未知参数进行估计.比如已知公式是$y = a*x + b$,未知参数是a和b,利用多真实的(x,y)训练数据对a和b的取值去自动估计.估计的方法是在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值,直到找到那个最符合样本点分布的参数(或参数组合). logistic分布 设X是连续随机变量,X服从logistic分布是指X具有下列分布函数和密度函数: $$F(x)=P(x \le x)=\frac 1 {1+e^{-
Java的发展历程
Java的发展历程充满了传奇色彩. 最初,Java是由Sun公司的一个研究小组开发出来的, 该小组起先的目标是想用软件实现对家用电器进行集成控制的小型控制装置. 开始,准备采用C++,但C++太复杂,而且安全性差,最后基于C++开发了一种新的语言Oak, 据说当时是小组成员之一Gosling在苦思冥想这种语言的名字时,正好看到了窗外的一颗橡树, Oak在英文里是"橡树"的意思,所以给该语言命名为Oak. 它是一种用于网络的精巧而安全的语言,但是这个在技术上非常成功的产品在商业上却几近失
Logistic回归 python实现
Logistic回归 算法优缺点: 1.计算代价不高,易于理解和实现2.容易欠拟合,分类精度可能不高3.适用数据类型:数值型和标称型 算法思想: 其实就我的理解来说,logistic回归实际上就是加了个sigmoid函数的线性回归,这个sigmoid函数的好处就在于,将结果归到了0到1这个区间里面了,并且sigmoid(0)=0.5,也就是说里面的线性部分的结果大于零小于零就可以直接计算到了.这里的求解方式是梯度上升法,具体我就不扯了,最推荐的资料还是Ng的视频,那里面的梯度下降就是啦,只不过一
Logistic回归的使用
Logistic回归的使用和缺失值的处理 从疝气病预测病马的死亡率 数据集: UCI上的数据,368个样本,28个特征 测试方法: 交叉测试 实现细节: 1.数据中因为存在缺失值所以要进行预处理,这点待会再单独谈2.数据中本来有三个标签,这里为了简单直接将未能存活和安乐死合并了3.代码中计算10次求均值 缺失值的处理: 一般来说有这么几种方法处理缺失值: 人工填写缺失值 使用全局变量填充缺失值 忽略有缺失值的样本 使用属性的中心度量(均值或中位数等)填充缺失值 使用与给定元祖同一类的所有样本的属
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
SPSS数据分析—配对Logistic回归模型
Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配对组变化而变化,反映了非实验因素在配对组中的作用,但是我们并不关心其大小, 因此在拟合时采用条件似然函数代替了一般似然函数,从而在拟合中消去了反映层因素的参数. SPSS中没有直接拟合配对Logistic回归模型的过程,需要对数据进行一些处理,采用其他方法进行拟合,拟合方法有变量差值拟合和COX模型
SPSS数据分析—多分类Logistic回归模型
前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型. 多分类Logistic回归模型又分为有序多分类Logistic回归模型和无序多分类Logistic回归模型 一.有序多分类Logistic回归模型 有序多分类Logistic回归模型拟合的基本方法是拟合因变量水平数-1个Logistic回归模型,也称为累积多分类Logit模型,实际上就是将因变量依次分割成两个等级,对这两个等级建立二分类Logistic
Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的
C# 6.0可能的新特性及C#发展历程
据扯,C# 6.0在不远的将来就发布了,对应的IDE可能是VS 2014(.Net Framework 5.0),因为VS 2013已于2013年10月份发布了,对应的是.Net Franework 4.5.1. 从Visual Studio的更新规律上来看,微软2或者3年,更新增加的东西会比较多,所以对于C# 6.0,还是有一些期待的. 下面这张图列出了C#每次重要更新的时间及增加的新特性,对于了解C#这些年的发展历程,对C#的认识更加全面,是有帮助的.其中图的最后一行C#6.0是根据一些博客
热门专题
centos怎么切换到桌面
gitee记住密码 mac
c# 获取所有层级目录
Androidstudio 真机安装不了apk
opencv measure_pair实现
js clone相当于继承吗
android 图片适应view大小
springMVC jsp 支持 spel 表达式
【NOIP2016提高组第5题】蚯蚓
codeforces 删除x后的树的高度
tp5 获取器 不存在的字段 获取不到
wpf 多个按钮 弹出一个弹窗popup
sql注入实验心得怎么写
vue根据parentid 递归处理下拉树数据
jieba只生成人物词云
Linux内存不足时优先杀那个进程
linux 8安装vlc播放器
java远程调用方法 Okhttp
搭建一个SHH环境,心得
layui 打开页面时立即加载图片