论文 Povey, D., Cheng, G., Wang, Y., Li, K., Xu, H., Yarmohamadi, M., & Khudanpur, S. (2018). Semi-orthogonal low-rank matrix factorization for deep neural networks. In Proceedings of the 19th Annual Conference of the International Speech Communication
项目实现:GitHub 参考博客:CNN模型之ShuffleNet v1论文:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices v2论文:ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design 一.分组卷积 Group convolution是将输入层的不同特征图进行分组,然后采用不同的卷积核再对
Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a n
Densenet的改良—PeleeNET Pelee: A Real-Time Object Detection System on Mobile Devices 论文地址:https://arxiv.org/abs/1804.06882 Peleenet专注于优化小型网络,针对densenet的结构做出了改良,达到了目前最先进的水准.在已有的在移动设备上执行的深度学习模型例如 MobileNet. ShuffleNet 等都严重依赖于在深度上可分离的卷积运算,而缺乏有效的实现.在本文中,来自加