首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
momentum算法推导
2024-11-02
深度学习Momentum(动量方法)
转自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲就是梯度高度敏感于参数空间的某些方向)的. 2.加速学习 3.一般将参数设为0.5,0.9,或者0.99,分别表示最大速度2倍,10倍,100倍于SGD的算法. 4.通过速度v,来积累了之前梯度指数级衰减的平均,并且继续延该方向移动: 再看看算法: 动量算法直观效果解释: 如图所示,红色为SG
BP神经网络模型及算法推导
一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output
带你找到五一最省的旅游路线【dijkstra算法推导详解】
前言 五一快到了,小张准备去旅游了! 查了查到各地的机票 因为今年被扣工资扣得很惨,小张手头不是很宽裕,必须精打细算.他想弄清去各个城市的最低开销. [嗯,不用考虑回来的开销.小张准备找警察叔叔说自己被拐卖,免费被送回来.] 如果他想从珠海飞到拉萨,最少要花多少机票钱呢?下面就说到我们今天要说的这个算法. 迪杰斯特拉(Dijkstra)算法 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为
1.XGBOOST算法推导
最近因为实习的缘故,所以开始复习各种算法推导~~~就先拿这个xgboost练练手吧. (参考原作者ppt 链接:https://pan.baidu.com/s/1MN2eR-4BMY-jA5SIm6WCGg提取码:bt5s ) 1.xgboost的原理 首先值得说明的是,xgboost是gbdt的升级版,有兴趣的话可以先看看gbdt的推导.xgboost同样是构造一棵棵树来拟合残差,但不同之处在于(1)gbdt使用一阶导,xgboost使用二阶导.(2)xgboost在loss中包括模型复杂度,
BP神经网络算法推导及代码实现笔记zz
一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的,吭哧吭哧学总能学会,毕竟还有千千万万个算法等着你. 本文货很干,堪比沙哈拉大沙漠,自己挑的文章,含着泪也要读完! ▌二. 科普: 生物上的神经元就是接收四面八方的刺激(输入),然后做出反应(输出),给它一点就灿烂.仿生嘛,于是喜欢放飞自我的 某些人 就提出了人工神经网络.一切的基础-->人工神经单元,
SVD在推荐系统中的应用详解以及算法推导
SVD在推荐系统中的应用详解以及算法推导 出处http://blog.csdn.net/zhongkejingwang/article/details/43083603 前面文章SVD原理及推导已经把SVD的过程讲的很清楚了,本文介绍如何将SVD应用于推荐系统中的评分预测问题.其实也就是复现Koren在NetFlix大赛中的使用到的SVD算法以及其扩展出的RSVD.SVD++. 记得刚接触SVD是在大二,那会儿跟师兄在做项目的时候就用到这个东西,然后到大三下学期刚好百度举办了一个电影推荐
BPTT算法推导
随时间反向传播 (BackPropagation Through Time,BPTT) 符号注解: \(K\):词汇表的大小 \(T\):句子的长度 \(H\):隐藏层单元数 \(E_t\):第t个时刻(第t个word)的损失函数,定义为交叉熵误差\(E_t=-y_t^Tlog(\hat{y}_t)\) \(E\):一个句子的损失函数,由各个时刻(即每个word)的损失函数组成,\(E=\sum\limits_t^T E_t\). 注: 由于我们要推倒的是SGD算法, 更新梯度是相对于一个训练样
误差逆传播(error BackPropagation, BP)算法推导及向量化表示
1.前言 看完讲卷积神经网络基础讲得非常好的cs231后总感觉不过瘾,主要原因在于虽然知道了卷积神经网络的计算过程和基本结构,但还是无法透彻理解卷积神经网络的学习过程.于是找来了进阶的教材Notes on Convolutional Neural Networks,结果刚看到第2章教材对BP算法的回顾就犯难了,不同于之前我学习的对每一个权值分别进行更新的公式推导,通过向量化表示它只用了5个式子就完成了对连接权值更新公式的描述,因此我第一眼看过去对每个向量的内部结构根本不清楚.原因还估计是自己当初
神经网络 误差逆传播算法推导 BP算法
误差逆传播算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多使用BP算法进行训练. 给定训练集\(D={(x_1,y_1),(x_2,y_2),......(x_m,y_m)},x_i \in R^d,y_i \in R^l\),即输入示例由\(d\)个属性描述,输出\(l\)个结果.如图所示,是一个典型的单隐层前馈网络,它拥有\(d\)个输入神经元.\(l\)个输出神经元.\(q\)个隐层神经元,其中,\(\theta_j\)表示第\(j\)个神经元的阈值,\(\gam
什么是KMP算法?KMP算法推导
花了大概3天时间,了解,理解,推理KMP算法,这里做一次总结!希望能给看到的人带来帮助!! 1.什么是KMP算法? 在主串Str中查找模式串Pattern的方法中,有一种方式叫KMP算法 KMP算法是在模式串字符与主串字符匹配失配时,利用已经匹配的模式串字符子集的最大块对称性,让模式串尽量后移的算法. 这里有3个概念:失配,已经匹配的模式串子集,块对称性 失配和隐含信息 在模式串的字符与主串字符比较的过程中,字符相等就是匹配,字符不等就是失配: 隐含信息是,失配之前,都是匹配. 在主串S[0,1
跟我学算法-svm支持向量机算法推导
Svm算法又称为支持向量机,是一种有监督的学习分类算法,目的是为了找到两个支持点,用来使得平面到达这两个支持点的距离最近. 通俗的说:找到一条直线,使得离该线最近的点与该线的距离最远. 我使用手写进行了推导 求解实例 软间隔,通过设置C,使得目标函数的松弛因子发生变化,松弛因子越大,表示分类越不严格 高斯核变化做映射,指的是把低维转换成高维,解决低维不可分的情况
三层神经网络自编码算法推导和MATLAB实现 (转载)
转载自:http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724.html 前言: 现在来进入sparse autoencoder的一个实例练习,参考Ng的网页教程:Exercise:Sparse Autoencoder.这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征.该网络共有3
EM(最大期望)算法推导、GMM的应用与代码实现
EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计. 使用EM算法的原因 首先举李航老师<统计学习方法>中的例子来说明为什么要用EM算法估计含有隐变量的概率模型参数. 假设有三枚硬币,分别记作A, B, C.这些硬币正面出现的概率分别是$\pi,p,q$.进行如下掷硬币试验:先掷硬币A,根据其结果选出硬币B或C,正面选硬币B,反面边硬币C:然后掷选出的硬币,掷硬币的结果出现正面记作1,反面记作0:独立地重复$n$次试验,观测结果为$\{y_1,y_2,...,y_n\}$.问三
基于Logistic回归和sigmoid函数的分类算法推导
此部分内容是对机器学习实战一书的第五章的数学推导,主要是对5.2节代码实现中,有一部分省去了相关的公式推导,这里进行了推导,后续会将算法进行java实现.此部分同样因为公式较多,采用手写推导,拍照记录的方式. 第一部分推导目标函数 第二部分采用梯度下降方法进行优化 至此两部分就完成了对logistics回归的公式推导.
神经网络和BP算法推导
注意:绘画太难了,因为他们画,本文中的所有插图来自基本算法饺子机类.请勿转载 1.习模型: 事实上,基本上全部的基本机器学习模型都能够概括为下面的特征:依据某个函数,将输入计算并输出. 图形化表示为下图: 当我们的g(h)为sigmoid函数时候,它就是一个逻辑回归的分类器.当g(h)是一个仅仅能取0或1值的函数时,它就是一个感知机.那么问题来了,这一类模型有明显缺陷:当模型线性不可分的时候.或者所选取得特征不完备(或者不够准确)的时候.上述分类器效果并非特别喜人. 例如以下例: 我们能够非常轻
100天搞定机器学习|day38 反向传播算法推导
往期回顾 100天搞定机器学习|(Day1-36) 100天搞定机器学习|Day37无公式理解反向传播算法之精髓 上集我们学习了反向传播算法的原理,今天我们深入讲解其中的微积分理论,展示在机器学习中,怎么理解链式法则. 我们从一个最简单的网络讲起,每层只有一个神经元,图上这个网络就是由三个权重和三个偏置决定的,我们的目标是理解代价函数对这些变量有多敏感.这样我们就知道怎么调整这些变量,才能使代价函数下降的最快. 我们先来关注最后两个神经元,我们给最后一个神经元一个上标L,表示它处在第L层.给定一
BP算法推导python实现
def sigmoid(inX): return 1.0/(1+exp(-inX)) '''标准bp算法每次更新都只针对单个样例,参数更新得很频繁sdataSet 训练数据集labels 训练数据集对应的标签标签采用one-hot编码(一位有效编码),例如类别0对应标签为[1,0],类别1对应标签为[0,1]alpha 学习率num 隐层数,默认为1层eachCount 每一层隐层的神经元数目repeat 最大迭代次数算法终止条件:达到最大迭代次数或者相邻一百次迭代的累计误差的差值不超过
BP神经网络算法推导
目录 前置知识 梯度下降法 激活函数 多元复合函数求偏导的相关知识 正向计算 符号定义 输入层 隐含层 输出层 误差函数 反向传播 输出层与隐含层之间的权值调整 隐含层与输入层之间权值的调整 计算步骤 前置知识 梯度下降法 \[ 设损失函数为F(\vec{w}) \\ 则F(\vec{w}+\Delta{\vec{w}})-F(\vec{w}) = \nabla{F(\vec{w})} \cdot \Delta{\vec{w}}\\ 其中\nabla{F(\vec{w})} 是 F(\vec{w
logistic regression二分类算法推导
bp算法推导过程
参考:张玉宏<深度学习之美:AI时代的数据处理与最佳实践>265-271页
AVR446步进电机算法推导及应用
https://blog.csdn.net/Renjiankun/article/details/80513839?utm_source=copy
热门专题
@EnableFeignClients注解
pandas 存 sql
vue i 标签鼠标经过显示小手
分钟转化为多少小时多少分钟 js
iis json mime类型
vue实现点击图片局部放大功能
laravel框架介绍
jq ajax跨域请求
java执行jsonp
fedora 32 添加 清华源
vue下拉框回显数据
阿里NLP架构与应用
vue 更新数据列表中的步进器数值
android home Application重启
xcode13生成静态库
android 城市列表
oracle如何获取为null和不等于某个值的记录
多分辨率分析和mallt
vscode输入输出重定向
merge into 使用2000语句出现套接字问题