首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
mpu6050 32.768k时钟 设计
2024-11-01
基于STM32的平衡车机器人设计-硬件电路设计
今天分享一个STM32F103为主控的自平衡车机器人的硬件电路设计.(亲测完全可用,且没有任何问题) 电路原理图: 电源部分采用12V锂电池作为输入,分三路稳压,其中7805作为5V传感器的供电以及后级AMS1117的电源输入端,一路AMS117 3.3单独给CPU供电,另外一路给3.3V传感器供电.本方案自带板载充电以及电压检测功能 时钟电路采用8M外部时钟,以及32.768K的RTC时钟,可方便拓展 复位电路,采用上电自复位以及手动复位 下载电路采用JTAG下载电路 按键+OLED可以实现在
FPGA异步时钟设计中的同步策略
1 引言 基于FPGA的数字系统设计中大都推荐采用同步时序的设计,也就是单时钟系统.但是实际的工程中,纯粹单时钟系统设计的情况很少,特别是设计模块与外围芯片的通信中,跨时钟域的情况经常不可避免.如果对跨时钟域带来的亚稳态.采样丢失.潜在逻辑错误等等一系列问题处理不当,将导致系统无法运行.本文总结出了几种同步策略来解决跨时钟域问题. 2 异步设计中的亚稳态 触发器是FPGA设计中最常用的基本器件.触发器工作过程中存在数据的建立(setup)和保持(hold)时间.对于使用上升沿触发的触
基于Verilog HDL 的数字时钟设计
基于Verilog HDL的数字时钟设计 一.实验内容: 利用FPGA实现数字时钟设计,附带秒表功能及时间设置功能.时间设置由开关S1和S2控制,分别是增和减.开关S3是模式选择:0是正常时钟显示:1是进入调分模式:2是进入调时模式:3是进入秒表模式,当进入秒表模式时,S1具有启动和停止功能,S2具有复位归零功能.只有四位数码管,所以没有做万年历,下一步会在这个基础上加入定时闹钟. 二.实验板 自个制作的实验板,用的是Altera CycloneIII EP3C40Q240C8N.上面的
为 32 位单片机设计的脚本语言 Berry
Berry是一款一款为32位单片机设计的脚本语言.Berry解释器使用C89标准实现,该语言可以在RAM或ROM很小的设备上运行. 尽管Berry的体积很小,但是它也支持class以及闭包等功能,使得单片机可以具有较好的二次开发能力.Berry没有将数值和字符串等简单类型设计为对象,这样不仅节省了RAM还可以防止频繁的malloc()调用.此外该脚本语言还有一些减少内存使用的优化. Berry非常容易和C语言进行交互,您可以使用C API调用Berry代码,也可以在Berry代码中调用C语言实现
【转载】32复用时钟AFIO开启情况
原文:http://blog.csdn.net/u012411027/article/details/44217313 百度了很多结果,打开看几乎全是下面这篇文章,真是天下文章一大抄啊.我也抄一下吧. 需要用到外设的重映射功能时才需要使能AFIO的时钟. 首先为什么要开启时钟? 答:因为要对寄存器进行读写!而在STM32中对寄存器的读写都是要打开寄存器对应的时钟才可以的[就像人一样,有了跳动的脉搏手臂才能有能量才能进行各种动作]. 然后就什么时候AFIO时钟开启(所有时钟都是这样)就清楚了:当需
VHDL 数字时钟设计
序言 这个是我在做FPGA界的HelloWorld--数字钟设计时随手写下的,再现了数字钟设计的过程 目标分析 时钟具有时分秒的显示,需6个数码管.为了减小功耗采用扫描法显示 按键设置时间,需要对按键进行消抖 时分秒即为2个60进制计数器,一个24进制计数器. 模块设计 综上所述,我采用模块化设计方法进行设计,绘制框图如下. 时钟分频产生各个模块所需频率时钟. 按键处理模块对按键信号进行消抖.变长脉冲为短脉冲等处理. 时间控制模块产生时间信号或对时间进行设置. 数码管驱动模块负责对时间信号BCD
STM32中用 stop 模式 配合低功耗模式下的自动唤醒(AWU) 能否实现FreeRTOS tickless 模式
已经实现 ,2018年11月17日11:56:42,具体 如下: 第一步 : 修改 void vPortSetupTimerInterrupt( void ) 函数 ,修改原来的 systick 定时器初始化 改为 RTC 初始化 void vPortSetupTimerInterrupt( void ) { NVIC_InitTypeDef NVIC_InitStructure; EXTI_InitTypeDef EXTI_InitStructure; /* Enable PWR and
影响FPGA设计中时钟因素的探讨。。。转
http://www.fpga.com.cn/advance/skill/speed.htm http://www.fpga.com.cn/advance/skill/design_skill3.htm 时钟是整个电路最重要.最特殊的信号,系统内大部分器件的动作都是在时钟的跳变沿上进行, 这就要求时钟信号时延差要非常小, 否则就可能造成时序逻辑状态出错:因而明确FPGA设计中决定系统时钟的因素,尽量较小时钟的延时对保证设计的稳定性有非常重要的意义. 1.1 建立时间与保持时间 建立时间(Tsu:
MSP430F5529时钟系统深究
1.为什么要进行时钟管理? 时钟系统是一个数字器件的命脉,对于普通的51单片机来说,它的时钟来源只有外部晶振,然后每12个振荡周期完成一个基本操作,所以也叫做12T单片机,但对于当前高级一点的单片机来说,比如MSP430F5529有5个时钟来源,经过UCS(Unified Clock System,通用时钟系统)模块之后,产生MCLK(Master Clock),SMCLK(Subsystem master clock ),ACLK(Auxiliary clock)三个时钟:对于更高端的单片机,
MPU9250/MPU6050与运动数据处理与卡尔曼滤波(1)
第一篇--概述和MPU6050及其自带的DMP输出四元数 概述 InvenSense(国内一般译为应美盛)公司产的数字运动传感器在国内非常流行,我用过它的两款,9250和6050.出于被国产芯片惯坏的习惯,我自然而然地认为其封装引脚和寄存器都是兼容的,所以这成功地让我打废两次板,这两款芯片的封装并不
高速PCB之EMC设计47则
高速PCB之EMC设计47则 差模电流和共模电流 辐射产生 电流导致辐射,而非电压,静态电荷产生静电场,恒定电流产生磁场,时变电流既产生电场又产生磁场.任何电路中存在共模电流和差模电流,差模信号携带数据或有用信号,共模信号是差模模式的负面效果. 差模电流 大小相等,方向(相位)相反.由于走线的分布电容.电感.信号走线阻抗不连续,以及信号回流路径流过了意料之外的通路等,差模电流会转换成共模电流 . 共模电流 大小不一定相等,方向(相位)相同.设备对外的干扰多以共模为主,差模干扰也存在,但共模干扰强
7系列FPGA的时钟资源——UG472
时钟架构总览 7系的FPGA使用了专用的全局(Global)和区域(Regional)IO和时钟资源来管理设计中各种的时钟需求.Clock Management Tiles(CMT)提供了时钟合成(Clock frequency synthesis),倾斜矫正(deskew),过滤抖动(jitter filtering)功能.非时钟资源,例如本地布线,不建议使用在时钟设计中. 全局时钟树(Global clock tree)可以驱动device中的所有同步原件(synchronous eleme
基于Linux的智能家居的设计(3)
2 硬件设计 本课题的硬件设计包含主控制器.传输数据设计.数据採集设计.控制驱动设计.显示设计.门禁设计. 2.1 主控制器 依据方案三选择S3C6410主控芯片,S3C6410是由Samsung公司推出的一款低功耗.高性价比的RSIC处理器 .基于ARM11内核.内置强大的硬件加速.显示处理和缩放,运动视频处理.音频处理[9].这个作为智能家居的处理器是不二之选.硬件性能上全然能够实现.本设计选用的基于S3C6410的OK6410开发板.开发板上拥有例如以下特征[10]: (1) 12M
【黑金原创教程】【TimeQuest】【第七章】供源时钟与其他
声明:本文为黑金动力社区(http://www.heijin.org)原创教程,如需转载请注明出处,谢谢! 黑金动力社区2013年原创教程连载计划: http://www.cnblogs.com/alinx/p/3362790.html <FPGA那些事儿--TimeQuest 静态时序分析>完整版下载地址: http://www.heijin.org/forum.php?mod=viewthread&tid=25284&extra=page%3D1 第七章:供源时钟与其他 7
STM32入门系列-STM32时钟系统,STM32时钟树
时钟对于单片机来说是非常重要的,它为单片机工作提供一个稳定的机器周期从而使系统能够正常运行.时钟系统犹如人的心脏,一旦有问题整个系统就崩溃.我们知道STM32属于高级单片机,其内部有很多的外设,但不是所有外设都使用同一时钟频率工作,比如内部看门狗和RTC,它只需30KHz的时钟频率即可工作,所以内部时钟源就有多种选择.在前面章节的介绍中,我们知道STM32系统复位后首先进入SystemInit函数进行时钟的设置,将STM32F1系统时钟设置为72MHz,然后进入主函数.那么这个系统时钟大小如何得
基于CameraLink的逻辑综合和版图设计
前期接口设计用的是Vivado18.3+Modelsim10.6,逻辑综合及版图生成的环境是Ubuntu16,逻辑综合用的工具Design Compiler,生成版图用的工具是Encounter. 下面是关于我做的CameraLink接口的ASIC逻辑综合和版图设计流程,重点介绍了逻辑综合过程: (1)CameraLink接口实现 (2)功能仿真 (3)逻辑综合 (4)布局布线及版图生成 (5)后仿真 1.CameraLink接口实现 1.1.接口设计 Camera Link接口标准是数字相机和
FPGA重要设计思想
FPGA重要设计思想 1.速度和面积互换原则.以面积换速度可以实现很高的数据吞吐率,其实串/并转换.就是一种以面积换速度的思想 2.乒乓操作. 3.串/并转换的思想. 高速数据处理的重要技巧之一.这里我来举一个多相滤波器抽取的例子: 抽取之后,两路数据以二分频的速度进行处理即可 4.流水线设计(在fir滤波器中表现很突出,一个时钟输出一个数据) 流水线设计可以从某种程度上提高系统频率..前提是:设计可以分为若干步骤进行处理,而且整个数据处理的过程是单向的,即没有反馈或者逆运算.前一个步骤的输
FPGA设计思想与技巧(转载)
题记:这个笔记不是特权同学自己整理的,特权同学只是对这个笔记做了一下完善,也忘了是从那DOWNLOAD来的,首先对整理者表示感谢.这些知识点确实都很实用,这些设计思想或者也可以说是经验吧,是很值得每一个有志于FPGA/CPLD方面发展的工程师学习的. 1.硬件设计基本原则 (1).速度与面积平衡和互换原则:一个设计如果时序余量较大,所能跑的频率远高于设计要求,能可以通过模块复用来减少整个设计消耗的芯片面积,这就是用速度优势换面积的节约:反之,如果一个设计的时序要求很高,普通方法达不到设计频率,那
32位系统和x86的关系?
32位操作系统针对32位CPU设计,cpu的位是指一次性可处理的数据量是多少,也等于寻址空间的大小或是通用寄存器的大小,一般数据总线的宽度也和cpu位数相同,但也有例外(如8088数据总线宽度为8然而却是16位处理器). x86指的是一种cpu的架构,因为intel的8086,286,386,486,586(开始叫奔腾了)而得名. 虽然x86架构中有16,32,64位cpu,但因为80386,80486(IA-32)在工业界的统治地位,32位操作系统也通常被称为x86系统.
32 bit 与 64 bit 程序(2)比较
32 bit 与 64 bit 程序(2)区别 由于操作系统内存分配的不同,导致软件开发过程中,需要编译不同版本的软件. 几个重要概念: (1)这里所说的的32位与64位程序,是指经过编译器编译后的可执行文件,例如像Windows上的exe文件,而最初编写的源码并没有32位和64位之说. (2)不是所有的程序需要区分32位和64位,对于原生语言例如C语言编写的程序需要区分64位与32位,但是对于像Java这样的语言,就不需要这样了,因为Java编写的程序是在JVM(Java虚拟机)上运行的,
热门专题
gitlab 远程分支拉取代码到本地
find命令删除文件夹
NOPI怎样获取excel单元格的列宽
idea $符号下面有波浪线
rabbitmq ack 开启
c# xmlns 去除
jpa select 列名 Column not found
javac命令如何编译引用了多个jar包的java文件
linux usb驱动
朱有鹏uboot笔记
SQL 列转行 根据一列进行字符分隔 转成多行
odi和kellte的区别
python try finally执行顺序
innodb_read_io_threads cpu数量
delphi format数字
LISTVIEW delphi 间隔
linq 关联表查询
c#如何在另外的文件中修改setget
JSON Schema 使用
群晖nas的gitserver怎么用