相机IMU融合四部曲(二):误差状态四元数详细解读 极品巧克力 前言 上一篇文章,<D-LG-EKF详细解读>中,讲了理论上的SE3上相机和IMU融合的思想.但是,还没有涉及到实际的操作,以及实际操作中会遇到的一些问题.所以,本文开始讲实际操作,包括,在相机和IMU融合的过程中,IMU速度的计算,加速度计和陀螺仪的使用,偏移的处理,重力的滤波等. 本文的主要参考文献为John sola的<Quaternion kinematics for the error state Kalman&g
Batch训练的反向传播过程 本文试图通过Softmax理解Batch训练的反向传播过程 采用的网络包含一层全连接和一层softmax,具体网络如下图所示: 交叉熵成本函数: \[L = - \frac{1}{m}\sum\limits_{i = 1}^m {\sum\limits_{j = 1}^N {{y_{ij}}\log {{\hat y}_{ij}}} }.\] where \(m\) is the number of sample, \(N\) denotes the number
在<神经网络的梯度推导与代码验证>之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所得结论的准确性,以便将抽象的数学符号和实际数据结合起来,将知识固化.更多相关内容请见<神经网络的梯度推导与代码验证>系列介绍. 需要用到的库有tensorflow和numpy,其中tensorflow其实版本>=2.0.0就行 import tensorflow as tf import n
安装过程中,有时候需要根据用户的设置来进行不同的安装,其中一个方面就是根据用户选择安装的Feature或者Component,来判断下一步的操作. Wix中提供了相关的判断方法和内置的状态值. Prepending some special characters to the names will give them extra meaning: % environment variable (name is case insensitive) $ action s