首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
.net分库分表框架
2024-10-25
.Net下的分库分表帮助类——用分库的思想来分表
简介 在大型项目中,我们会遇到分表分库的情景. 分库,将不同模块对应的表拆分到对应的数据库下,其实伴随着公司内分布式系统的出现,这个过程也是自然而然就发生了,对应商品模块和用户模块,我们会建立商品服务和用户服务,各个服务访问各自的数据库,系统间的交互,通过远程调用实现,而不是直接访问其数据库. 但是随着业务的进一步发展,数据表也会出现瓶颈,比如数据表的记录已经超过了千万级,到了这个量级,速度也会慢下来.所以接下来就是分表. 比如用户表,我们会分user_1,user_2
基于代理的数据库分库分表框架 Mycat实践
192.168.199.75 MySQL . MyCAT master 192.168.199.74 MySQL slave 192.168.199.76 MySQL standby master 如果说上面这张表不足以说明实验模型,那接下来再给一张图好了,如下所示: 实验模型 我想这样看来的话,各个节点布了哪些组件,节点间的角色关系应该一目了然了吧 实验环境规划好了以后,接下来进行具体的部署与实验过程,首先当然是 MyCAT代理的部署 MyCAT 部署 关于该部分,网上教程实在太多了,但最
分库分表框架ShardingSphere入门学习1
背景 传统的将数据集中存储至单一数据节点的解决方案,在性能.可用性和运维成本这三方面已经难于满足互联网的海量数据场景. 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降:同时,高并发访问请求也使得集中式数据库成为系统的最大瓶颈. 从可用性的方面来讲,服务化的无状态型,能够达到较小成本的随意扩容,这必然导致系统的最终压力都落在数据库之上.而单一的数据节点,或者简单的主从架构,已经越来越难
001---mysql分库分表
mysql分库分表 一.整体的切分方式 1.分库分表:即数据的切分就是通过某种特定的条件,将我们存放在同一个数据库中的数据分散存放到多个数据库(主机)中,以达到分散单台设备负载的效果 2.数据的切分根据其切分规则的类型,可以分为如下两种切分模式 [1]垂直(纵向)切分:把单一的表拆分成多个表 / 将不相关的表,分散到不同的数据库(主机)上. 如:用户表.商品SKU表.交易Pay表,根据业务不同进行切分,将表切分到不同数据库上. 优点: (1).拆分后业务清晰,拆分规则明确 (2).系统之间进行整
海量数据分库分表方案(二)技术选型与sharding-jdbc实现
上一章已经讲述分库分表算法选型,本章主要讲述分库分表技术选型 文中关联上一章,若下文出现提及其时,可以点击 分库分表算法方案与技术选型(一) 主要讲述 框架比较 sharding-jdbc.zdal 代码实现样例,如需源码可在后文中查看 主键生成策略 可以按需阅读文章 点赞再看,关注公众号:[地藏思维]给大家分享互联网场景设计与架构设计方案 掘金:地藏Kelvin https://juejin.im/user/5d67da8d6fb9a06aff5e85f7 常见框架 除了原生JDBC,网上常见
一文快速入门分库分表中间件 Sharding-JDBC (必修课)
书接上文 <一文快速入门分库分表(必修课)>,这篇拖了好长的时间,本来计划在一周前就该写完的,结果家庭内部突然人事调整,领导层进行权利交接,随之宣布我正式当爹,紧接着家庭地位滑落至第三名,还给我分配了一个长期维护任务:带娃.看看我们的靓照,标准的小淑女一枚萌萌哒. 作为Sharding-JDBC 分库分表实战系列的开篇文章,我们在前文中回顾了一下分库分表的基础知识,对分库分表的拆分方式有了一定的了解,下边我们介绍一下 Sharding-JDBC 框架和快速的搭建一个分库分表案例,为讲解后续功能
分库分表神器 Sharding-JDBC,几千万的数据你不搞一下?
今天我们介绍一下 Sharding-JDBC框架和快速的搭建一个分库分表案例,为讲解后续功能点准备好环境. 一.Sharding-JDBC 简介 Sharding-JDBC 最早是当当网内部使用的一款分库分表框架,到2017年的时候才开始对外开源,这几年在大量社区贡献者的不断迭代下,功能也逐渐完善,现已更名为 ShardingSphere,2020年4⽉16⽇正式成为 Apache 软件基⾦会的顶级项⽬. 随着版本的不断更迭 ShardingSphere 的核心功能也变得多元化起来.从最开始 S
分库分表利器之Sharding Sphere(深度好文,看过的人都说好)
Sharding-Sphere Sharding-JDBC 最早是当当网内部使用的一款分库分表框架,到2017年的时候才开始对外开源,这几年在大量社区贡献者的不断迭代下,功能也逐渐完善,现已更名为 ShardingSphere,2020年4⽉16⽇正式成为 Apache 软件基⾦会的顶级项⽬. 随着版本的不断更迭 ShardingSphere 的核心功能也变得多元化起来.如图7-1,ShardingSphere生态包含三款开源分布式数据库中间件解决方案,Sharding-JDBC.Shardin
.net core 基于Dapper 的分库分表开源框架(core-data)
一.前言 感觉很久没写文章了,最近也比较忙,写的相对比较少,抽空分享基于Dapper 的分库分表开源框架core-data的强大功能,更好的提高开发过程中的效率: 在数据库的数据日积月累的积累下,业务数据库中的单表数据想必也越来越大,大到百万.千万.甚至上亿级别的数据,这个时候就很有必要进行数据库读写分离.以及单表分多表进行存储,提高性能,但是呢很多人不知道怎么去分库分表,也没有现成的分库分表的成熟框架,故不知道怎么下手,又怕影响到业务:现在我给大家推荐core-data的分库分表开源框架.框架
重磅来袭,使用CRL实现大数据分库分表方案
关于分库分表方案详细介绍 http://blog.csdn.net/bluishglc/article/details/7696085 这里就不作详细描述了 分库分表方案基本脱离不了这个结构,受制于实现的难度,好像没有看到有很方便的实现方案框架 为了解决此问题,在CRL框架基础上作了扩展,使CRL能很好实现此方案,以之前了解到的需求,基本能满足了 本方案拆分结构表示为 会员为业务核心,所有业务围绕会员来进行,所以垂直划分用会员编号作索引,将会员分配到不同的库 会员订单增长量是不固定的,所以需要平
利用sharding-jdbc分库分表
sharding-jdbc是当当开源的一款分库分表的数据访问层框架,能对mysql很方便的分库.分表,基本不用修改原有代码,只要配置一下即可,完整的配置参考以下内容: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/
DB层面上的设计 分库分表 读写分离 集群化 负载均衡
第1章 引言 随着互联网应用的广泛普及,海量数据的存储和访问成为了系统设计的瓶颈问题.对于一个大型的 互联网应用,每天几十亿的PV无疑对数据库造成了相当高的负载.对于系统的稳定性和扩展性造成了极大的问题.通过数据切分来提高网站性能,横向扩展数据层 已经成为架构研发人员首选的方式.水平切分数据库,可以降低单台机器的负载,同时最大限度的降低了了宕机造成的损失.通过负载均衡策略,有效的降低了单台 机器的访问负载,降低了宕机的可能性:通过集群方案,解决了数据库宕机带来的单点数据库不能访问的问题:通过读
当当开源sharding-jdbc,轻量级数据库分库分表中间件
近期,当当开源了数据库分库分表中间件sharding-jdbc. Sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,实现透明化数据库分库分表访问.Sharding-JDBC是继dubbox和elastic-job之后,ddframe系列开源的第3个项目. Sharding-JDBC直接封装JDBC协议,可以理解为增强版的JDBC驱动,旧代码迁移成本几乎为零. Sharding-JDBC定位为轻量级java框架,使用客户端直连数
解读分库分表中间件Sharding-JDBC
[编者按]数据库分库分表从互联网时代开启至今,一直是热门话题.在NoSQL横行的今天,关系型数据库凭借其稳定.查询灵活.兼容等特性,仍被大多数公司作为首选数据库.因此,合理采用分库分表技术应对海量数据和高并发对数据库的冲击,是各大互联网公司不可避免的问题. 虽然很多公司都致力于开发自己的分库分表中间件,但截止目前,仍无完美的开源解决方案覆盖此领域. 分库分表适用场景 分库分表用于应对当前互联网常见的两个场景——大数据量和高并发.通常分为垂直拆分和水平拆分两种. 垂直拆分是根据业务将一个库(表)拆
数据库分库分表(sharding)系列【转】
原文地址:http://www.uml.org.cn/sjjm/201211212.asp数据库分库分表(sharding)系列 目录; (一) 拆分实施策略和示例演示 (二) 全局主键生成策略 (三) 关于使用框架还是自主开发以及sharding实现层面的考量 (四) 多数据源的事务处理 (五) 一种支持自由规划无须数据迁移和修改路由代码的Sharding扩容方案 (一) 拆分实施策略和示例演示 第一部分:实施策略 图1.数据库分库分表(sharding)实施策略图解 1.准备阶段 对数据库进
数据库分库分表(sharding)系列(五) 一种支持自由规划无须数据迁移和修改路由代码的Sharding扩容方案
作为一种数据存储层面上的水平伸缩解决方案,数据库Sharding技术由来已久,很多海量数据系统在其发展演进的历程中都曾经历过分库分表的Sharding改造阶段.简单地说,Sharding就是将原来单一数据库按照一定的规则进行切分,把数据分散到多台物理机(我们称之为Shard)上存储,从而突破单机限制,使系统能以Scale-Out的方式应对不断上涨的海量数据,但是这种切分对上层应用来说是透明的,多个物理上分布的数据库在逻辑上依然是一个库.实现Sharding需要解决一系列关键的技术问题,这些问题主
支付宝分库分表中间件--zdal简介
中间件, 如果仅仅作为一名用户的话, 主要关注一下如何使用即可, 大多数情况下也就是配置. 下面简单的介绍一下支付宝的分库分表中间件--->zdal在web项目中的配置. 1, 在网上查阅相关资料时, 有人说该项目已经开源, 但所附的github链接已经打不开了. 索性直接在github中搜索"zdal", 可惜结果也是寥寥无几. 有一个较为全面的, 在这里附上链接: https://github.com/lanxiuwang/zdal; 仔细一看, 居然是源码, 有兴趣的可以f
DBA 小记 — 分库分表、主从、读写分离
前言 我在上篇博客 "Spring Boot 的实践与思考" 中比对不同规范的 ORM 框架应用场景的时候提到过主从与读写分离,本篇随笔将针对此和分库分表进行更深入地探讨. 1. 漫谈 在进入正题之前,我想先随意谈谈对架构的拓展周期的想法(仅个人观点).首先,我认为初期规划不该太复杂或者庞大,无论项目的中长期可能会发展地如何如何,前期都应该以灵活为优先,像分库分表等操作不应该在开始的时候就考虑进去.其次,我认为需求变更是非常正常的,这点在我等开发的圈子里吐槽的最多,其中自然有 &quo
mysql 分库分表 ~ ShardingSphere生态圈
一 简介 Apache ShardingSphere是一款开源的分布式数据库中间件组成的生态圈二 成员包含 Sharding-JDBC是一款轻量级的Java框架,在JDBC层提供上述核心功能,使用方式与正常的JDBC方式如出一辙,面向Java开发的用户. Sharding-Proxy是一款实现了MySQL二进制协议的服务器端版本,类似于网易的cetus,爱可生的dble等 Sharding-Sidecar从Service Mesh的理念中应用而生,面向于云原生架构.三 gith
SpringBoot使用Sharding-JDBC分库分表
本文介绍SpringBoot使用当当Sharding-JDBC进行分库分表. 1.有关Sharding-JDBC 有关Sharding-JDBC介绍这里就不在多说,之前Sharding-JDBC是当当网自研的关系型数据库的水平扩展框架,现在已经捐献给Apache,具体可以查看Github,地址是:https://shardingsphere.apache.org/document/current/cn/overview/ shardingsphere文档地址是:https://shardings
热门专题
sqlite配置url再yml文件动态文件
angular 离开前自动
akka 消息传递的可靠性
flask model序列化
kettlePOST带参数请求
postman GET默认请求头
zookeeper漏洞扫描
C# 检测按键 组合建判断
mongodb中表数据清洗
mysql查询一个数据不在表中
一个MVC解决方案能设置几个默认页
ireport comping report一直在转
dotnet core 获取本进程占用内存
jquery香蕉苹果
HBuilderX 使用eslint
jenkins job中文名称
png 二进制 像素
fpga和asic哪个频率高
idea一次性导入多个项目
selenium 自动化 web端扩展程序插件如何调出