首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
ntt和fft的区别
2024-10-31
多项式的基本运算(FFT和NTT)总结
设参与运算的多项式最高次数是n,那么多项式的加法,减法显然可以在O(n)时间内计算. 所以我们关心的是两个多项式的乘积.朴素的方法需要O(n^2)时间,并不够优秀. 考虑优化. 多项式乘积 方案一:分治乘法. 对于多项式X,Y,假设各有2m项,(即最高次数是2m-1) X,Y分别可以用两个含m项的多项式来表示,即: 则 由此可见,为了计算XY,只需计算出AC, (A+B)(C+D), BD,然后用多项式加减法求得XY即可. 设含有m项的多项式相乘的时间为T(m) 则 于是容易算出时间复杂度是,约
【Uoj34】多项式乘法(NTT,FFT)
[Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set> #include<map&g
任意模数NTT和FFT的玄学优化学习笔记
本来一直都是写\(7\)次的\(MTT\)的--然后被\(shadowice\)巨巨调教了一通之后只好去学一下\(4\)次的了-- 简单来说就是我们现在需要处理一类模数不为\(NTT\)模数的情况 这里是板子 三模\(NTT\) 跑的很慢而且我也不会,这里就不说了 拆系数\(FFT\) 两个多项式\(P(z),Q(z)\),我们把它们的系数拆成 \[A(z)=\sum_{i=0}^\infty (P_i>>15)z^i,B(z)=\sum_{i=0}^\infty (P_i\&3276
Wannafly Winter Camp Day5 Div1 E题 Fast Kronecker Transform 转化为NTT或FFT
目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog @ Problem:传送门 原题目描述在最下面. 对给定的式子算解. \(0\leq k\leq n+m,c_k=(\sum_{i+j=k}i\times j\times \sigma_{a_i,b_j}) mod\;998244353\),其中\(当且仅当a=b时,\sigma_{a_i,b_j}=1.\) Solution: 我们发现只有当\(a_i\)和\(b_j\)相
FTT & NTT & 分治FFT
FFT study from: http://www.orchidany.cf/2019/02/19/FFT1/ https://www.cnblogs.com/zwfymqz/p/8244902.html e^iθ=cosθ+isinθ 重新写了一遍…… A(x)=F(x)*G(x) F(x),G(x),A(x)分别为n,m,n+m次多项式 对于任意x,A(x),F(x),G(x)都是一个特定的数值. F(x),G(x)为什么可以进行系数表示法和点值表示法的互换? 因为它们是k次多项式,如使用
NTT+多项式求逆+多项式开方(BZOJ3625)
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\frac{2}{\sqrt{1-4h(x)}+1}$ 于是我们需要多项式开方和多项式求逆. 多项式求逆: 求$B(x)$,使得$A(x)*B(x)=1\;(mod\;x^m)$ 考虑倍增. 假设我们已知$A(x)*B(x)=1\;(mod\;x^m)$,要求$C(x)$,使得$A(x)*C(x)=1\;
多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法
卷积FFT、NTT、FWT
先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. 我们所需要的就是O(nlogn)快速地将两个系数多项式表示成点值多项式,O(n)求得乘积的点值表示后O(nlogn)还原成系数多项式. 这里就需要套FFT板子了... FFT中取n个单位根,需要n是2的幂. 又因为n个点可确定一个次数小于n的多项式,所以n > 乘积多项式的最高次数. 以上. HD
FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_
[FFT/NTT/MTT]总结
最近重新学了下卷积,简单总结一下,不涉及细节内容: 1.FFT 朴素求法:$Coefficient-O(n^2)-CoefficientResult$ FFT:$Coefficient-O(nlogn)-Dot-O(n)-DotResult-O(nlogn)-CoefficientResult$ 其中系数到点值的转化称为$DFT(离散傅里叶变换)$,而点值到系数的转为称为$IDFT(傅里叶逆变换)$ 原本朴素的直接带入$n$个值的$DFT$和直接使用拉格朗日插值公式的$IDFT$的复杂度仍为$O
多项式乘法,FFT与NTT
多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b_0x^0+b_1x^1+b_2x^2+...b_ix^i+...+b_{m-1}x^{m-1}$ 则 $C=c_0x^0+c_1x^1+c_2x^2+...c_ix^i+...+c_{m+n-2}x^{m+n-2}$ 其中 $$c_k=\sum_{i+j=k}^{i<n,j<m}a[i]b[j]
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF
快速傅里叶变换(FFT)学习笔记(其二)(NTT)
再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT NTT的定义 从单位根到原根 常用NTT模数表 NTT的实现 写在前面 为了不使篇幅过长,预计将把学习笔记分为四部分: DFT,IDFT,FFT的定义,实现与证明:快速傅里叶变换(FFT)学习笔记(其一) NTT的实现与证明:快速傅里叶变换(FFT)学习笔记(其二) 任意模数NTT与FFT的优化技巧
DFT/FFT/NTT
在Seal库和HElib库中都用到了NTT技术,用于加快多项式计算,而NTT又是FFT的优化,FFT又来自于DFT,现在具体学习一下这三个技术! 基础概念 名词区分 1.DFT:离散傅立叶变换 2.FFT:快速傅立叶变换 3.NTT:快速数论变换 4.MTT:NTT的扩展 5.多项式卷积:多项式乘法 6.根据多项式的系数表示法求点值表示法的过程叫做"求值":根据点值表示法求系数表示法的过程称为"插值" 7.求一个多项式的乘法,即求卷积,先通过傅立叶变换对系数表示法的
关于傅里叶变换NTT(FNT)的周边
NTT:快速数论变化,对于FFT精度减少的情况,NTT可以避免但是会慢一点,毕竟是数论有Mod,和快速米 引用:http://blog.csdn.net/zz_1215/article/details/40430041 周边介绍. 利用原根,在ZP整数域(后悔没学好<信息安全数学基础> 原根介绍:http://baike.baidu.com/link?url=2gVDOcvJL0eTySKDiwFaDE7hNOTSJ087eGtv42QCt8tYEJZyUMXb6Eb40n0E0ygRoj4u
NTT小结及原根求法
注意 由于蒟蒻实在太弱了~^_^~暂时无法完成证明,仅能写出简单版总结 与FFT的区别 \(NTT\)与\(FFT\)的代码区别就是把单位根换成了原根,从而实现无精度误差与浮点数的巨大常数 原根具有单位根的所有特点,原根是在特定模数下的定义 对于模数\(p\),原根\(g\)满足:\(~_{i=0}^{p-1}g^i (mod~p)\)均不同 用\(type=1,g^{\frac{p-1}{2*mid}}:type=-1,\dfrac{1}{g^{\frac{p-1}{2*mid}}}\)代替单
[大坑]FFT学习
[大坑]FFT学习 Macros #define fon(i,s) for(int i=0;i<s; ++i) #define fone(i,s) for(int i=0;i<=s;++i) #define fox(i,f,t) for(int i=f;i<t; ++i) #define foxe(i,f,t) for(int i=f;i<=t;++i) #define don(i,s) for(int i=s;i; --i) #define done(i,s) for(int i
FFT小结
先上模板 #include<cstdio> #include<cmath> <<)*+; typedef long long ll; ll power(ll t,;,t=t*t%mod))f=f*t%mod;return f;} <<],b[<<],n,m,k,w[][<<],f; void FFT(int x[],int k,int v) { int i,j,l,tmp; ;i<k;i++) { if(i>j)tmp=x
快速数论变换(NTT)小结
NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\(a,p\)互素,且\(p>1\), 对于\(a^n \equiv 1 \pmod{p}\)最小的\(n\),我们称之为\(a\)模\(p\)的阶,记做\(\delta_p(a)\) 例如: \(\delta_7(2)=3\), \(2^1 \equiv 2 \pmod{7}\) \(2^2 \equ
UVA - 12298 Super Poker II NTT
UVA - 12298 Super Poker II NTT 链接 Vjudge 思路 暴力开个桶,然后统计,不过会T,用ntt或者fft,ntt用个大模数就行了,百度搜索"NTT大模数". 错误 我也不知道,改着改着自己就A了 思路 #include <bits/stdc++.h> #define ll long long using namespace std; const ll N=1e7+7,mod=39582418599937LL; char s; bool vi
luogu[愚人节题目3]现代妖怪殖民地 NTT
U34272 [愚人节题目3]现代妖怪殖民地 fft 题目链接 https://www.luogu.org/problemnew/show/U34272 思路 虽然是个py题. ntt(或者fft)模板题,可能稍不注意就会T 代码 #include <bits/stdc++.h> using namespace std; const int N=1e6+7,mod=998244353; int n,m,a[N],b[N],limit=1,l,r[N]; int q_pow(int a,int
热门专题
hadoop没有生成jar文件
shell监控网站状态钉钉
微信上复制信息打开淘宝
lede zerotier无法启用
jpa @Query 冒号和问号的区别
redirect传值到控器
html form action动态
canvas可以用rpx吗
apache设置允许访问的ip和目录
toolStripButton文字显示图片下方
C# MVC 每次请求变更Session 但保留用户信息
下列属于SpringAop的核心概念的是
delphi dbgrid 复选框
unity角色控制器实现跳跃的方式
spring 依赖注入 解析
NX 二次开发moveobject用法
python oracle 错误提示乱码
div中文字垂直显示后怎么居中
C#只读字段是否占用空间
window不能用telnet