flatten是numpy.ndarray.flatten的一个函数,其官方文档是这样描述的: ndarray.flatten(order='C') Return a copy of the array collapsed into one dimension. Parameters: order : {‘C’, ‘F’, ‘A’, ‘K’}, optional ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to f
numpy.ravel(a, order='C') Return a flattened array numpy.chararray.flatten(order='C') Return a copy of the array collapsed into one dimension numpy.squeeze(a, axis=None) Remove single-dimensional entries from the shape of an array. 相同点: 将多维数组 降为 一维数组
Python实现鸢尾花数据集分类问题——基于skearn的SVM 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaolin Shen' from sklearn import svm import numpy as np from sklearn import model_selection import matplotlib.pyplot as plt import matplotlib as mpl from m
Python股票数据分析 最近在学习基于python的股票数据分析,其中主要用到了tushare和seaborn.tushare是一款财经类数据接口包,国内的股票数据还是比较全的 官网地址:http://tushare.waditu.com/index.html#id5.seaborn则是一款绘图库,通过seaborn可以轻松地画出简洁漂亮的图表,而且库本身具有一定的统计功能. 导入的模块: import matplotlib.pyplot as plt import seaborn as sn
引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从简单的数据集入手如手写数字识别.泰坦尼克号.房价预测,这些目前已经有丰富且成熟的方案可以参考,之后关注未来就业的方向如计算广告.点击率预测,有合适的时机,再与小伙伴一同参加线上比赛. 数据集 介绍 MNIST ("Modified National Institute of Standards an