首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
OUT/DMU/PCA 大众
2024-09-01
在CATIA中通过OUTGEN 生成OUT 文件 教程
前言: 本教程基于CATIA V5R2014版本. 关于大众数据标准格式:OUT/DMU/PCA文件的说明,如图1所示. 图1:关于OUT/DMU/PCA文件的说明 1.创建KPR文件,下挂所有子文件(GEO.ZIN等等),如图2所示 图2:KPR下挂相应子文件 2.确保所有文件的文件名符合大众命名规则,通过N-Tool工具下的保存或另存为命令可以排除这类问题,如图3所示. 图3:N-Tool工具 3.子文件下的参数必填项(type_of_design),其它参数可选择性填写,如图4所示. 图4
用scikit-learn学习主成分分析(PCA)
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中.最常用的PCA类就是sklearn.decomposition.PCA,我们下面主要也会讲解基于这个类的使用的方法. 除了PCA类以外,最常用的PCA相关类还有KernelPCA类,在原理篇我们也讲到
主成分分析(PCA)原理总结
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据.具体的,假如我们的数据集是n维的,共有m个数据$(x^{(1)},x^{(2)},...,x^{(m)})$.我们希望将这m个数据的维度从n维降到n'维
Hawk 1.2 快速入门2 (大众点评18万美食数据)
本文将讲解通过本软件,获取大众点评的所有美食数据,可选择任一城市,也可以很方便地修改成获取其他生活门类信息的爬虫. 本文将省略原理,一步步地介绍如何在20分钟内完成爬虫的设计,基本不需要编程,还能自动并行抓取. 看完这篇文章,你应该就能举一反三地抓取绝大多数网站的数据了.Hawk是一整套工具,它的能力取决于你的设计和思路.希望你会喜欢它. 详细过程视频可参考:http://v.qq.com/page/z/g/h/z01891n1rgh.html,值得注意的是,由于软件不断升级,因此细节和视频可能
Node.js大众点评爬虫
大众点评上有很多美食餐馆的信息,正好可以拿来练练手Node.js. 1. API分析 大众点评开放了查询商家信息的API,这里给出了城市与cityid之间的对应关系,链接http://m.api.dianping.com/searchshop.json?®ionid=0&start=0&categoryid=10&sortid=0&cityid=110以GET方式给出了餐馆的信息(JSON格式).首先解释下GET参数的含义: start为步进数,表示分步获取信
机器学习基础与实践(三)----数据降维之PCA
写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法解释PCA,并举一个实例一步步计算,然后再进行数学推导,最后再介绍一些变种以及相应的程序.(数学推导及变种下次再写好了) 正文: 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计
数据降维技术(1)—PCA的数据原理
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在
深度学习笔记——PCA原理与数学推倒详解
PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多,或者说我要存在内存中会占用我的较大内存,那么我就需要对这些个点想一个办法来降低它们的维度,或者说,如果把这些点的每一个维度看成是一个特征的话,我就要减少一些特征来减少我的内存或者是减少我的训练参数.但是要减少特征或者说是减少维度,那么肯定要损失一些信息量.这就要求我在减少特征或者维度的过程当中呢,尽
PCA、ZCA白化
白化是一种重要的预处理过程,其目的就是降低输入数据的冗余性,使得经过白化处理的输入数据具有如下性质:(i)特征之间相关性较低:(ii)所有特征具有相同的方差. 白化又分为PCA白化和ZCA白化,在数据预处理阶段通常会使用PCA白化进行去相关操作(降低冗余,降维),而ZCA则只是去相关,没有降维. 区别如下: PCA白化ZCA白化都降低了特征之间相关性较低,同时使得所有特征具有相同的方差. ,ZCA白化只需保证方差相等. 2. PCA白化可进行降维也可以去相关性,而ZCA白化主要用于去相关性另
PCA 协方差矩阵特征向量的计算
人脸识别中矩阵的维数n>>样本个数m. 计算矩阵A的主成分,根据PCA的原理,就是计算A的协方差矩阵A'A的特征值和特征向量,但是A'A有可能比较大,所以根据A'A的大小,可以计算AA'或者A'A的特征值,原矩阵和其转置矩阵的特征值是一样的,只是特征向量不一样. 假如我们的数据按行存放,A是m*n的矩阵,n>>m,m是样本个数,n是维数,则协方差矩阵应该是A'A,A'A是n*n维的一个矩阵,这个矩阵非常大,不利于求特征值和特征向量,所以先求AA'的特征值,它是一个m*m维的矩阵.
小众Tox——大众的“去中心化”聊天软件
★Tox是什么 一个反窥探的开源项目:一种基于DHT(BitTorrent)技术的即时通讯协议:一个为安全而生的加密通讯系统 .美国棱镜计划曝光后,一个名为 irungentoo 的牛人于17天后的2013年6月23日在Github上发起该项目,目标是为大众提供安全且便捷的沟通. ★ Tox有什么 [加密通讯]——每次会话都使用不同的密码加密,安全无忧,巧妙防破解 [去中心化]——没有服务器存储你的账户信息和会话内容,无从窥探,隐私有保障 [开源免费]——源代码可以自由获取.修改和审查,不用担心
【统计学习】主成分分析PCA(Princple Component Analysis)从原理到实现
[引言]--PCA降维的作用 面对海量的.多维(可能有成百上千维)的数据,我们应该如何高效去除某些维度间相关的信息,保留对我们"有用"的信息,这是个问题. PCA给出了我们一种解决方案和思路. PCA给我的第一印象就是去相关,这和数据(图像.语音)压缩的想法是一致的.当然,PCA像是一种有损的压缩算法.但是不要紧,去除掉的信息也许是噪声呢,而且损失的信息不是"主要成分". PCA 降维的概念不是简单的去除原特征空间的某些维度,而是找出原特征空间的新的正交基,并且这个
主成分分析 (PCA) 与其高维度下python实现(简单人脸识别)
Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可能多能反映原特征的新特征来替代他们,主成分分析因此产生.主成分分析可以看成是高维空间通过旋转坐标系找到最佳投影(几何上),生成新维度,其中新坐标轴每一个维度都是原维度的线性组合\(\theta'X\)(数学上),满足: 新维度特征之间的相关性尽可能小 参数空间\(\theta\)有界 方差尽可能大,
IOS网络第七天WebView-02WebView和网页的交互2,删除大众点评多余文字,加上蒙版进度
************ #import "HMViewController.h" @interface HMViewController () <UIWebViewDelegate> @property (nonatomic, weak) UIActivityIndicatorView *loadingView; @end @implementation HMViewController /** test.html存在于服务器,里面的html和js代码,我们是无法修改的
PCA与LDA的区别与联系
由于涉及内容较多,这里转载别人的博客: http://blog.csdn.net/sunmenggmail/article/details/8071502 其实主要在于:PCA与LDA的变换矩阵不同,由于他们在处理信息目标上存在差异: PCA:主要使得原向量在其上的投影最大: LDA:主要使得通过投影后的向量最具区分性. 原理在上面的博客里比较全面了.
【腾讯Bugly干货分享】美团大众点评 Hybrid 化建设
本文来自于腾讯Bugly公众号(weixinBugly),未经作者同意,请勿转载,原文地址:http://mp.weixin.qq.com/s/rNGD6SotKoO8frmxIU8-xw 本期 T 沙龙探讨了移动端热更新相关的话题.由于沙龙时间的限制,本期我们选取了美团的 Hybrid 化建设.去哪儿的跨平台 ListView 性能优化.微博 Android 端热更新踩过的坑话题.还期待热更新.热修复哪些话题?欢迎留言给我们.也欢迎报名参加 T 沙龙分享自己开发中的心得. Hybrid 是移动
Hawk: 20分钟无编程抓取大众点评17万数据
1. 主角出场:Hawk介绍 Hawk是沙漠之鹰开发的一款数据抓取和清洗工具,目前已经在Github开源.详细介绍可参考:http://www.cnblogs.com/buptzym/p/5454190.html 强烈建议先读这篇文章,该文介绍了详细原理和抓取链家二手房的攻略,以此为基础,才能较好的理解整个操作. GitHub地址:https://github.com/ferventdesert/Hawk 本文将讲解通过本软件,获取大众点评的所有美食数据,可选择任一城市,也可以很方便地修改成获取
主成分分析(principal components analysis, PCA)
原理 计算方法 主要性质 有关统计量 主成分个数的选取 ------------------------------------------------------------------------------------------------------------------------ http://my.oschina.net/gujianhan/blog/225241 ---------------------------------------------------------
运用PCA进行降维的好处
运用PCA对高维数据进行降维,有一下几个特点: (1)数据从高维空间降到低维,因为求方差的缘故,相似的特征会被合并掉,因此数据会缩减,特征的个数会减小,这有利于防止过拟合现象的出现.但PCA并不是一种好的防止过拟合的方法,在防止过拟合的时候,最好是对数据进行正则化: (2)使用降维的方法,使算法的运行速度加快: (3)减少用来存储数据的内存空间: (4)从x(i)到z(i)的映射过程中,对训练数据进行降维,然后对测试数据或验证数据进行降维:
机器学习笔记----四大降维方法之PCA(内带python及matlab实现)
大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效果,看到球员扣篮的动作就可以了,比如下图: 如果我们直接对篮球照片进行几百万像素的处理,会有几千维甚至几万维的数据要计算,计算量很大.而往往我们只需要大概勾勒出篮球的大概形状就可以描述问题,所以必须对此类数据降维,这样会使处理数据更加轻松.这个在人脸识别中必须要降维,因为我们在做特征提取的时候几万维
热门专题
kmeans聚类算法原理
centos 创建nginx软连接
devexpress添加到vs工具箱
ac66u b1恢复原厂固件
spootboot平台
linux中红帽6给用户设置磁盘配额
Kettle JOB 循环
.net mvc npoi导出excel
github thinkphp 异常处理
oracle重复的只取一行数据 不重复的显示所有
虚拟机xml文件配置
java中对象set的值在jvm中存储在哪里
IEEE数据存储委员会
C#成员与属性的区别
最大上升子串是什么意思
报头的后四个字节表示什么含义
Action<object> 作为类型
2.[简答题] CSS 声明(规则)
uniapp分在分包内引入插件代码包
win7互ping无法访问