首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
pd.DataFrame 默认索引
2024-09-06
pd库dataframe基本操作
一.查看数据(查看对象的方法对于Series来说同样适用) 1.查看DataFrame前xx行或后xx行 a=DataFrame(data); a.head(6)表示显示前6行数据,若head()中不带参数则会显示全部数据. a.tail(6)表示显示后6行数据,若tail()中不带参数则也会显示全部数据. 2.查看DataFrame的index,columns以及values a.index ; a.columns ; a.values 即可 3.describe()函数对于数据的快速统计汇总
Pandas进阶之DataFrame多级索引
多级索引:在一个轴上有多个(两个以上)的索引,能够以低维度形式来表示高维度的数据.单级索引是Index对象,多级索引是MultiIndex对象. 一.创建多级索引 方法一:隐式创建,即给DataFrame的index或columns参数传递两个或更多的数组. df1 = pd.DataFrame(np.random.randint(80, 120, size=(2, 4)), index= ['girl', 'boy'], columns=[['English', 'English', 'Chi
Pandas中Series和DataFrame的索引
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. 使用下标索引的时候下标总是从0开始的,而且索引值总是数字.而使用关键字进行索引,关键字是key里面的值,既可以是数字,也可以是字符串等. Series对象介绍: Series对象是由索引index和值values组成的,一个index对应一个value.其中index是pandas中的Index对象
数据科学:pd.DataFrame.drop()
一.功能 删除集合中的整行或整列: 二.格式 df.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise') labels:指示标签,表示行标或列标: axis = 0:默认取 0,表示删除集合的行: axis = 1:删除集合中的列: index:删除行: columns:删除列: level:针对有两级行标或列标的集合:如下图,集合有两级行标: level =
Dataframe的索引问题
1 两个Dataframe相加时,一定要注意索引是否对应再相加,利用这个特点有时可以先用set_index()将某些列置为索引列,再进行相加. import pandas as pd df1 = pd.DataFrame({'a':np.arange(1,5,1), 'b':np.arange(3,15,3)}, index=[2,3,4,5]) df2 = pd.DataFrame({'c':[2,3,4,5], 'd':[6,7,8,9]}) print(df1) print(df2) #
Oracle数据库创建表是有两个约束带有默认索引
Oracle数据库创建表是有两个约束带有默认索引.1.主键primary Key:唯一索引.非空2.唯一Unique:唯一索引,可以是空值如果没有设定主键和唯一约束,表中不会有默认索引的. 建立主键/唯一约束(有默认索引)或者索引之后,oracle会在单独的一块区域建立索引的数据,索引的数据和表的数据是分别存放的,不是在一起的,索引的数据就对应表的主键或者其他索引,例如,你的表里有100条数据,并且有主键,那么在索引的区域就会有100条数据和它们对应,并且由于是主键数据,所以每条数据都是唯一的,
pd.dataframe和series以及np.narray的维度升降
1.第一步读入泰坦尼克号数据集 import pandas as pd data = pd.read_csv(r".\Narrativedata.csv" ,index_col=0 )#index_col=0将第0列作为索引,不写则认为第0列为特征 data.head() 2.通过df的loc的函数从df中取出一列的数据,该数据格式为 : <class 'pandas.core.series.Series'> age1=data.loc[:,"Age"
python 7:del 列表指定元素、list.pop(索引)、list.remove(元素值)(删除列表指定元素,且不可再使用;默认索引-1,弹出指定列表元素,可再使用;移除列表指定第一个元素)
bicycles = ['trek', 'cannondale', 'redline', 'specialized'] print(bicycles) del bicycles[0] #删除指定列表元素'trek',且不可再使用 print(bicycles) str1 = bicycles.pop() #第一参数默认为-1,删除列表尾元素'specialized',可再使用 print("移除的元素是:" + str1) print(bicycles) str2 = bicycles
sql 删除默认索引,对象 依赖于 列,由于一个或多个对象访问此列
declare @name varchar(50)select @name =b.name from sysobjects b join syscolumns aon b.id = a.cdefaultwhere a.id = object_id('table_name')and a.name ='column_name'select @nameif(@name)exec('alter table table_name drop constraint ' + @name)
DataFrame 行列数据的筛选
一.对DataFrame的认知 DataFrame的本质是行(index)列(column)索引+多列数据. DataFrame默认索引是序号(0,1,2…),可以理解成位置索引. 一般我们用id标识不同记录,不会改变index.但为了理解不同特征(列)含义,我们往往会重新指定column. 二.对dataframe进行行列数据筛选 import pandas as pdimport numpy as np from pandas import DataFrame df = DataFrame(
Numpy 与 DataFrame对比与应用
(一)对比Numpty 与 DataFrame默认索引取值不同点 Numpy索引取值 #Numpy索引取值 data=np.empty((2,4),dtype=int) print(data) ''' [[4128860 6029375 3801157 7340124] [7602297 7274600 3342446 54]] ''' #取行 print('取第一行结果') print(data[0]) #[4128860 6029375 3801157 7340124] 默认data[0]拿
pandas 学习 第7篇:DataFrame - 数据处理(应用、操作索引、重命名、合并)
DataFrame的这些操作和Series很相似,这里简单介绍一下. 一,应用和应用映射 apply()函数对每个轴应用一个函数,applymap()函数对每个元素应用一个函数: DataFrame.apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds) DataFrame.applymap(self, func) 定义一个函数fun,使用apply()函数把fun应用到由DataFrame对象的列构成的一维
数据分析入门——pandas之DataFrame多层/多级索引与聚合操作
一.行多层索引 1.隐式创建 在构造函数中给index.colunms等多个数组实现(datafarme与series都可以) df的多级索引创建方法类似: 2.显式创建pd.MultiIndex 其中.from_arrays为类似上面的参数,推荐使用简单的from_product函数(会自动进行交叉): 二.列多层索引 列多层索引同理: 三.多层索引操作与切片 1.Series多层索引 使用中括号和loc效果完全一样: 切片,只切第一级索引,与之前一致,需要指定某些指定行时,可以通过iloc
pandas之DataFrame创建、索引、切片等基础操作
知识点 Series只有行索引,而DataFrame对象既有行索引,也有列索引 行索引,表明不同行,横向索引,叫index,0轴,axis=0 列索引,表明不同列,纵向索引,叫columns,1轴,axis=1 1.DataFrame创建,可以通过index和columns指定索引名称 #方式一a = pd.DataFrame(np.arange(10).reshape(2,5)) print(a) #方式二 a = pd.DataFrame(np.arange(10).reshape(2,5)
pandas中DataFrame重置设置索引
在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取.插入等. 小笔总结了以下几种重置索引的方法: import pandas as pd import numpy as np df = pd.DataFrame(np.arange(20).reshape((5, 4)),columns=['a', 'b', 'c', 'd']) #得到df: a b c d 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 4 16 17 1
pandas | 如何在DataFrame中通过索引高效获取数据?
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是pandas数据处理专题的第四篇文章,我们一起来聊聊DataFrame中的索引. 上一篇文章当中我们介绍了DataFrame数据结构当中一些常用的索引的使用方法,比如iloc.loc以及逻辑索引等等.今天的文章我们来看看DataFrame的一些基本运算. 数据对齐 我们可以计算两个DataFrame的加和,pandas会自动将这两个DataFrame进行数据对齐,如果对不上的数据会被置为Nan(not a number). 首先我
Python array,list,dataframe索引切片操作 2016年07月19日——智浪文档
array,list,dataframe索引切片操作 2016年07月19日——智浪文档 list,一维,二维array,datafrme,loc.iloc.ix的简单探讨 Numpy数组的索引和切片介绍: 从最基础的list索引开始讲起,我们先上一段代码和结果: a = [0,1,2,3,4,5,6,7,8,9] a[:5:-1] #step < 0,所以start = 9 a[0:5:-1] #指定了start = 0 a[1::-1] #step < 0,所以stop = 0 输出: [
pandas 对数据帧DataFrame中数据的索引及切片操作
1.创建数据帧 index是行索引,即每一行的名字:columns是列索引,即每一列的名字.建立数据帧时行索引和列索引都需要以列表的形式传入. import pandas as pd df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], index=['row_0', 'row_1'], columns=['col_0', 'col_1', 'col_2']) 2.获取数据帧的行索引和列索引 2.1 获取行索引 # 以数组形式返回 row_name = df.ind
pandas DataFrame(2)-行列索引及值的获取
pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: import pandas as pd df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]}) print df # 结果: A B 0 0 3 1 1 4 2 2 5 行索引自动生成了 0,1,2 如果要自己指定行索引和列索引,可以使用 index 和 column 参数: 这个数据是5个车站10天内的客流数据: ridership_df = pd
学习笔记13—python DataFrame获取行数、列数、索引及第几行第几列的值
1. df=DataFrame([{‘A’:’11’,’B’:’12’},{‘A’:’111’,’B’:’121’},{‘A’:’1111’,’B’:’1211’}]) print df.columns.size#列数 2 print df.iloc[:,0].size#行数 3 print df.ix[[0]].index.values[0]#索引值 0 print df.ix[[0]].values[0][0]#第一行第一列的值 11 print df.ix[[1]].values[0][1
pandas将DataFrame的列变成行索引
pandas提供了set_index方法可以将DataFrame的列(多列)变成行索引,通过reset_index方法可以将层次化索引的级别会被转移到列里面. 1.DataFrame的set_index方法 data = pd.DataFrame(np.arange(,).reshape(,),index=["a","b","c"],columns=["A","B","C"]) prin
热门专题
c#输入数字猜测窗体
vue-cli 动画效果
Android stdio登录界面
groovy json转换 string
re quest post请求请求
为什么要给div中img基线对齐
Hikaricp 整合ssm
3d图的基本操作顺序
web项目怎么用单元测试
cesium倾斜摄影场景显示
UE SetAnchors 类型
GitHub安装Vimium
某跨国食品公司的信息管理系统
jquery 添加删除表格行
在二层环境中为什么要选择根桥
unity 父脚本使用子脚本变量
hive 设置并行度
无刷电调一般都是什么烧
C#清除datagridview表格
包含POST Data提交的格式