首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
PROFIBUS电阻
2024-09-02
如何正确使用Profibus插头以及终端电阻
插头与终端电阻在Profibus通讯中有着非常重要的作用,它们使用起来非常简单,没有很多复杂的设置:但是正是由于使用简单,使得很多工程师在使用当中忽略了一些细节,导致很多通讯问题. 1 Profibus插头的结构与简单用法 图1Profibus插头结构 这是常见的Profibus插头,如果我们有A.B两个站点要做Profibus通讯,应该如何连接插头呢?因为总线上只有两个站,显然终端电阻都要打到ON位置.那么插头上的接线是否要一进一出呢. 图2 两个DP站点的连接 正确的做法是两个插头都连接进线
Profibus 接线
无论是组成MPI还是RPOFIBUS-DP网络,用到的主要部件都是一样的: PROFIBUS电缆:电缆型号有多种,其中最基本的是PROFIBUS FC(Fast Connect快速连接)Standard电缆(订货号6XV1 830-0EH10) PROFIBUS网络连接器:网络连接器也有多种形式,如出线角度不同等等 具体电缆及接头订货号请参看:常用附件订货号 连接网络连接器 A. 电缆和剥线器.使用FC技术不用剥出裸露的铜线. 图1. 剥好一端的PROFIBUS电缆与快速剥线器(FCS,订货号6
USB Host的上拉下拉电阻
关于USB的上下拉电阻,不是随便接个任意阻值的电阻就ok了. 当你的USB为主设备的时候,D+.D-上分别接一个15K的下拉电阻,这样可以使得在没有设备插入的时候,D+.D-上始终保持低电平:当为从设备接口时,可以通过在上拉电阻来设置不同的传输速率,当D+接一个1.5K上拉电阻,可以工作在高速率模式如12MBPs,当D-接1.5K上拉电阻,工作在低速率模式,如1.5MPBs. 主USB自动识别从设备为高速还是低速就靠上拉电阻在D+还是D-上区别,电阻阻值的不规范会影响usb自动识别分配资源,
Arduino 极速入门系列 - 光控灯(3) - 光敏电阻、与电阻分压那些事
继续是讲解基础原理,新手专用部分.这次讲光敏电阻,和用电阻分压.光电元器件有好几种,其中测光相关的元器件,常见的有光敏三极管和光敏电阻,我们这次光控灯用光敏电阻.在我们光控灯里面,将会使用它搭建出分压电路,给Arduino 的模拟引脚发送模拟量.新学的朋友们需要了解光敏电阻是什么回事,分压又是怎样做的,本篇就是讲解这两点. 光敏电阻 光敏电阻(photo-resistor / light-dependent resistor),是在特定波段照射下,阻值会减少的电阻.所谓特定波段,也包括了不可见的
Arduino 极速入门系列 - 光控灯(2) - 关于开关,上拉、下拉电阻那些事
接上篇,这次继续讲解光控灯的另外两个组成部分 - 开关和光敏电阻,光控灯里面将会有自锁开关按钮和光敏电阻.这此主要给新玩电子的朋友解释一下开关按钮的做法. 开关按钮的引脚电平读取问题 - 新手专用 我们搭一个超简单的电路,如上图.Arduino Mini Pro 的 9 号引脚,接到一个按钮,但注意看,这按钮后面没有接任何东西.我们运行一下以下代码: void setup() { Serial.begin(9600); pinMode(9, INPUT); } void loop() { del
S5PV210的电阻触摸屏&ADC控制器
一.ADC与触摸屏控制器结构框图 1.S5PV210一共支持10路模拟输入,分别为AIN0-AIN9.其中AIN0和AIN1是只做模拟输入的,AIN2-AIN9分别可以支持2个电阻式触摸屏,所以这个就是上个博客中电阻式触摸屏的 第一种接口,将电阻触摸板传感器直接与SoC控制器相连.所以4个模拟输入引脚负责一个电阻式触摸屏. 2.从上面可以看出来,整个控制器由多个部分组成.AD转换和触摸屏控制部分有2个附属单元.其中一个是反向控制AINn引脚的逻辑(图中的箭头),主要作用是在触摸屏获取坐标 的过程
ZOV压敏电阻
http://www.zov.net.cn/download/spd_07D.htm http://item.taobao.com/item.htm?spm=a1z10.5.w4002-1369342227.12.3LKK0L&id=35837620319 ZOV 07D241K 不可以用铜丝短接代替,压敏电阻的作用是对用电器起保护作用.原理是和用电器并联在电路中,在用电器正常工作时,压敏电阻的电阻很大,基本不起作用,当电路中有大电流流过时,压敏电阻瞬间导通(ns量级)使得电路中的电流全部流过压
0R电阻作用
0欧电阻的作用(网上收集整理的) 0欧的电阻大概有以下几个功能: ①做为跳线使用.这样既美观,安装也方便. ②在数字和模拟等混合电路中,往往要求两个地分开,并且单点连接.我们可以用一个0欧的电阻来连接这两个地,而不是直接连在一起.这样做的好处就是,地线被分成了两个网络,在大面积铺铜等处理时,就会方便得多.附带提示一下,这样的场合,有时也会用电感或者磁珠等来连接. ③做保险丝用.由于PCB上走线的熔断电流较大,如果发生短路过流等故障时,很难熔断,可能会带来更大的事故.由于0欧电阻电流承受能力
第一次见4.3K电阻
今天焊RC522的实验板,接收电阻买的是5.1K,焊接时发现丝层写的是432,阻为4.26K.理论值应该是4.3K
P0口上拉电阻选择
如果是驱动led,那么用1K左右的就行了.如果希望亮度大一些,电阻可减小,最小不要小于200欧姆,否则电流太大:如果希望亮度小一些,电阻可增大,增加到多少呢,主要看亮度情况,以亮度合适为准,一般来说超过3K以上时,亮度就很弱了,但是对于超高亮度的LED,有时候电阻为10K时觉得亮度还能够用.我通常就用1k的. 对于驱动光耦合器,如果是高电位有效,即耦合器输入端接端口和地之间,那么和LED的情况是一样的:如果是低电位有效,即耦合器输入端接端口和VCC之间,那么除了要串接一个1——4.7k之间的
自制单片机之十……AT89S51的上拉电阻问题
很多网友都问我AT89S51的P0口为什么要接一个上拉电阻.我就用一个篇幅来说一说 P0口和其它三个口的内部电路是不同的,如下图 P0口是接在两个三极管D0和D1之间的,而P1-P3口的上部是接一个电阻的.P0口的上面那个三极管D0是在进扩展存储器或扩展总线时使用MOVX指令时才会控制它的导通和截止,在不用此指令时都是截止的.在平常我们使用如:P0_1=0 P0_1=1这些语句时控制的都是下面那个三极管D1. 我们先假设P1口接一个74HC373,来看一看它的等效图 当AT89S51的P1口上接
USB信号是什么类型的? 为什么在D+,D-处要接上拉下拉电阻呢,具体阻值要如何计算
USB协议要求的,1.5K上拉在D+时表示是全速设备,在D-表示不是全速设备有些方案里面(比如PNX5230)推荐D+/D-接下拉1M的电阻是为了提高数据传输稳定性的 ① usb有主从设备之分,主设备有:pc, 现在市面上的那些插u-disk即可播放mp3的“mp3”之类的,usb 信号是差分信号,信号线为D+, D-,. 在usb host 端, D+,D- 各接一个15kohm 的下拉电阻, 而在usb device端,这时就有高速低速设备的区别了.usb1.0, 1.1,2.0协议中都有
USB匹配电阻
做过USB的人都或许有一个纠结,那就是D+和D-上到底要串多大的电阻,串在源端还是终端. 我想说:网络上的说法都不完全正确,首先USB有低速.全速和高速之分,在低速和全速模式下是电压驱动的,驱动电压为3.3V,但在高速模式下是电流驱动的,驱动电流为17.78mA,host-device模型如下: Host和device的D+和D-都有45ohm的电阻端接到地,所以每根线的并联电阻为22.5ohm,17.78x22.5=400mV,所以高速模式下的差分幅度为800mV (这时匹配电阻为0),但是匹
苹果充电器USB端的识别电阻的设置
苹果为充电器定义了3种充电电流,分别是0.5A/1A/2.1A.具体是由3种不同的电阻组合来实现的.当苹果的设备ipad,iphone,ipod接入USB口充电器时,会先检测USB D+和D-上的电压,以确定该充电器的输出电流是多少,再结合自身所需电流,从而确定具体的输入电流. 0.5A充电器USB端口设置 1A充电器USB端口设置 2.1A充电器USB端口设置 2.4A充电器USB端口设置
STM32采集电阻触摸贴膜
今天为了解决一个测量电阻屏压力的问题,自己直接用STM32做了一个测量电阻屏的程序(直接把触摸屏的四根线接到单片机引脚上),通过AD切换采集,采集X轴电压,Y轴电压,和压力..最后附上自己的程序 先说一下电阻屏的原理 两层膜 上下的线(电阻)是呈 十 字交叉 现在按下以后测量X轴 X+ 接VCC X-接GND Y-不接,测Y+的电压 相当于 按下的位置越靠近X+ 测得的电压越高 同理越原理X+测得的电压越低 对了 测量得电压不受YR-和YR+的影响,因为测量时YR-那端是浮空
BZOJ 2419: 电阻 [高斯消元 物理]
http://www.lydsy.com/JudgeOnline/problem.php?id=2419 题意: n个点m个电阻构成一张图,求1到n的等效电阻 第一节课看一道题弃疗,于是来做这道物理题 orz PoPoQQQ大爷 http://blog.csdn.net/popoqqq/article/details/41703037 电流形成的图类似一个流网络,也满足流量平衡:(貌似好像有个叫基尔霍夫定律的玩意儿,然而我只知道基尔霍夫矩阵....) 令从$1$到$n$流的电流$I=1$,则:
【从零开始自制CPU之学习篇01】识别四色环电阻
制作CPU的好多部分都用到了各种阻值的电阻,由于我选购的是色环电阻,即电阻表面涂上一定颜色的色环,来代表这个电阻的阻值.因此通过色环来快速识别电阻阻值需要作为储备知识,不然一堆电阻插在面包板上很快就乱了.下图为我选购电阻的实拍图. 四色环电阻计算: 色环电阻有四色.五色.六色三种,我选购的为四色环电阻,因此下面介绍一下四色换电阻的计算方式. 四色环电阻的前三环的颜色范围都是:黑0 棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9:第四环的颜色范围是:金5%, 银10%,无20%,代表误差.各
I2C 上拉电阻选择计算公式
I2C接口上拉电阻的选择 - I2C接口上拉电阻的选择 1.I2C接口的输出端是漏极开路或集电极开路,所以必须在接口外接上拉. 2.上拉电阻的范围很宽,但也需要跟据功耗.信号上升时间等具体确定. 和速度应该没关系.主要是I2C是oc,所以需要.和驱动的从机个数(虽然从机个数不是由电阻决定的)有一定关系 不能说和速度没关系, 从机数量多的话, 由于经常在CMOS 集成电路里面源和基底是相连的, 而漏和基底存在寄生电容, 所以源和漏之间是有寄生电容的, 过大的上拉电阻会引起延时,导致边缘的上升下降速
Android串口屏(电阻,电容触摸),带AV输入,7寸LCD1(800*48...
基本参数:CPU:MT6572 双核1GHzRAM:512MB存储:4GB网络:GSM,WCDMA(BAND1)WIFI:2.4G 802.11bgn蓝牙:2.0支持GPS定位 扩展参数:1.电源输入8~28V宽电压输入.2.可选配电阻触摸屏和电容触摸屏.3.可选配AV摄像头输入,CVBS(NTSC/PAL).4.内置STM32F103C8T6单片机可灵活扩展外部总线(嵌入式人员可开发),单片机可通过Android远程升级调试. 转自雨滴woshichuanqi
AJ的笔记之上拉电阻的工作原理分析
第二章:聊一聊上拉电阻的工作原理 **********本文所采用的单片机是:STC89C52RC系******************** [重点提要]其实,理解上拉电阻的原理,关键是理解这两个词:锁存器&开漏输出. (1)关于锁存器 我们知道,单片机是由微处理器.存储器以及输入输出接口组成的芯片,具体到引脚,我们了解到单片机的结构如下图所示: 原来P1,P2,P3接口对应的元器件是锁存器(一种存储器),而锁存器有一个特征就是存储单元电路.锁存,其实就是缓存的意思,可以把信号暂存为某种电平状态:
热门专题
编译报错all-stage1-gcc
C#根据内容高度e.Graphics.DrawImage()
qt 调用 winform控件
Mybatis源码执行流程图
Ubuntu网络服务状态
RestTemplate例子
命令修改mysq 表数据
mac virtualbox桥接没有网络
根据linux命令 查询命令所属包名
js只允许输入正负数字
Python断言最优
OnOutOfMemoryError 脚本
power pivot 天数
element 表格 链接
selenuim table 中第一个 tr 怎么选中
bootstrap 横排panel
PhantomJS文档
jenkins通过ssh添加slave节点
Revert 之后远程分支的代码会变吗
6E4.1是不是常量