参考网页:http://sklearn.apachecn.org/cn/0.19.0/ 其中提供了中文版的文件说明,较为清晰. from sklearn.linear_model import LinearRegression as lr import matplotlib.pyplot as plt import numpy as np x = np.array([3.6,4.5,2.6,4.9,2.5,3.5]).reshape(-1,1) y = np.array([9.7,8.1,7.6
sklearn-生成随机数据 import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties from sklearn import datasets %matplotlib inline font = FontProperties(fname='/Library/Fonts/Heiti.ttc') 多标签分类数据 X
1.make_bolbs() 函数 from sklearn.datasets.samples_generator import make_blobs import numpy as np import matplotlib.pyplot as plt X , y = make_blobs(n_samples=1000 , n_features= 2 ,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.3,0.3,0.4],random
#coding:utf-8 # from python.Lib.packages.sklearn.tree import DecisionTreeClassifier # from python.Lib.packages.matplotlib.pyplot import * # from python.Lib.packages.sklearn.cross_validation import train_test_split # from python.Lib.packages.sklearn.e