首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python数据分析和挖掘知识点总结
2024-10-19
利用python数据分析与挖掘相关资料总结
小生今年研二,目前主要从事软件工程数据挖掘与分析.之前一直苦于找不到一个从数据预处理.数据分析.数据可视化和软件建模的统一平台.因此,小生辗转反辙学习了java,R语言,python,scala等等.最后忽然发现python正是小生苦苦寻觅的“稀世珍宝”.在这里主要总结利用python分析数据的一些工具包和相关资料,还望各位指正共同进步. 主要的工具包: numpy: http://www.numpy.org/
【读书笔记与思考】《python数据分析与挖掘实战》-张良均
[读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基础篇我也看了,但发现有不少理论还是讲得不够透彻,个人还是比较倾向于 <Machine Learning>--Tom M.Mitchell,Andrew 的 machine learning 课程,或周华志的<机器学习>,Jiawei Han 的 <data mining>.
Python数据分析与挖掘所需的Pandas常用知识
Python数据分析与挖掘所需的Pandas常用知识 前言Pandas基于两种数据类型:series与dataframe.一个series是一个一维的数据类型,其中每一个元素都有一个标签.series类似于Numpy中元素带标签的数组.其中,标签可以是数字或者字符串.一个dataframe是一个二维的表结构.Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签.你可以把它想象成一个series的字典项. Pandas常用知识 一.读取csv文件为dataf
学习参考《Python数据分析与挖掘实战(张良均等)》中文PDF+源代码
学习Python的主要语法后,想利用python进行数据分析,感觉<Python数据分析与挖掘实战>可以用来学习参考,理论联系实际,能够操作数据进行验证,基础理论的内容对于新手而言还是挺有帮助的, 能从实际场景介入入手讲解,有前因后果的介绍,但是对于多个方法,为什么要采用其中某个执行方法没有细化. 共15章,分两个部分:基础篇.实战篇.基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖
python数据分析与挖掘实战
<python数据分析与挖掘实战>PDF&源代码&张良均 下载:链接:https://pan.baidu.com/s/1TYb3WZOU0R5VbSbH6JfQXw提取码:3dhe原网站还得注册,下载速度超慢,还是我这快.分享更多python数据分析相关电子书PDF及代码下载: 链接:https://pan.baidu.com/s/1gP_16Xq9eVmLJ1yOsWD9FA 提取码:l8dx <python数据分析与挖掘实战(张良均等)>PDF+源代码PDF,3
python 数据分析与挖掘实战01
python 数据分析与挖掘实战 day 01 08/02 这种从数据中"淘金",从大量数据包括文本中挖掘出隐含的.未知的.对决策有潜在价值关系.模式或者趋势,并用这些知识和规则建立用于决策支持的模型.提供预测性决策支持的方法.工具和过程就是数据挖掘. 数据挖掘的基本任务就是包括利用>>>>>>分类与预测.聚类.关联规则.时序模式.偏差检测和智能推荐等方法找到meta-relationship 要针对具体的数据挖掘需求,首先应该明确本次挖掘的目的是什
python数据分析与挖掘实战第二版pdf-------详细代码与实现
[书名]:PYTHON数据分析与挖掘实战 第2版[作者]:张良均,谭立云,刘名军,江建明著[出版社]:北京:机械工业出版社[时间]:2020[页数]:340[isbn]:9787111640028 学习Python的主要语法后,想利用python进行数据分析,感觉<Python数据分析与挖掘实战>可以用来学习参考,理论联系实际,能够操作数据进行验证,基础理论的内容对于新手而言还是挺有帮助的, 能从实际场景介入入手讲解,有前因后果的介绍,但是对于多个方法,为什么要采用其中某个执行方法没有细化.
《Python数据分析与挖掘实战》读书笔记
大致扫了一遍,具体的代码基本都没看了,毕竟我还不懂python,并且在手机端的排版,这些代码没法看. 有收获,至少了解到以下几点: 一. Python的语法挺有意思的 有一些类似于JavaScript这种动态语言的特性在里面,比如多值赋值.比如Lambda表达式等,有机会可以找本python的入门书籍来看看,下面是2017年6月的最新语言排行版,可以看到,传统语言一直在衰退比如c.c#.Java.c++.php.perl等,而一些适应互联网发展的新兴语言一直在增长,比如Python.Ja
Python数据分析与挖掘常用模块
python在数据科学方面需要用到的库: a.Numpy:科学计算库.提供矩阵运算的库. b.Pandas:数据分析处理库 c.scipy:数值计算库.提供数值积分和常微分方程组求解算法.提供了一个非常广泛的特定函数集合. d.Matplotlib:数据可视化库 e.Scikit-learn:机器学习库 安装顺序如下: 1.pip install numpy2.pip install pandas 3.pip install scipy (sudo apt-get install libatla
《Python数据分析与挖掘实战》-第四章-数据预处理
点我看原版
python数据分析与挖掘实战————银行分控模型(几种算法模型的比较)
一.神经网络算法: 1 import pandas as pd 2 from keras.models import Sequential 3 from keras.layers.core import Dense, Activation 4 import numpy as np 5 # 参数初始化 6 inputfile = 'C:/Users/76319/Desktop/bankloan.xls' 7 data = pd.read_excel(inputfile) 8 x_test = da
[Python数据挖掘]第2章、Python数据分析简介
<Python数据分析与挖掘实战>的数据和代码,可从“泰迪杯”竞赛网站(http://www.tipdm.org/tj/661.jhtml)下载获得 1.Python数据结构 2.Numpy数组 import numpy as np #一般以np作为numpy的别名 a = np.array([2, 0, 1, 5]) #创建数组 print(a) #输出数组 print(a[:3]) #引用前三个数字(切片) print(a.min()) #输出a的最小值 a.sort() #将a的元素从小
零基础学习Python数据分析
网上虽然有很多Python学习的教程,但是大多是围绕Python网页开发等展开.数据分析所需要的Python技能和网页开发等差别非常大,本人就是浪费了很多时间来看这些博客.书籍.所以就有了本文,希望能帮大家少走一点弯路. -----------------我是分割线-------------- 本文章主要从数据分析.机器学习(深度学习)的目的出发, 讲讲如何零基础学习Python语法.数据分析模块(Numpy.Scipy.Scikit和Pandas等)以及使用python进行机器学习(SFram
Python数据分析--Pandas知识点(三)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, 二的基础上继续总结. 前面所介绍的都是以表格的形式中展现数据, 下面将介绍Pandas与Matplotlib配合绘制出折线图, 散点图, 饼图, 柱形图, 直方图等五大基本图形. Matplotlib是python中的一个2D图形库, 它能以各种硬拷贝的格式和跨平台的交互式环境生成高质量的图形,
Python数据分析--Pandas知识点(二)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表df import pandas as pd df = pd.DataFrame({"地区": ["A区","B区", "C区"], "前半年销量": [3500, 4500,3800], "后半年销
python数据分析&挖掘,机器学习环境配置
目录 一.什么是数据分析 1.这里引用网上的定义: 2.数据分析发展与组成 3.特点 二.python数据分析环境及各类常用分析包配置 1.处理的数据类型 2.为什么选择python 三.python数据分析环境安装 1.Ipython 2.Jupyter 3.Anaconda安装器 4.Jupyter与集成开发环境与文本编辑器 三.常用数据分析包 1.NumPy 2.pandas 一.什么是数据分析 1.这里引用网上的定义: 数据分析是指用适当的统计分析方法对收集来的大量数据进行
Python3数据分析与挖掘建模实战
Python3数据分析与挖掘建模实战 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时候可以关注下面几点: 1.为了追求精简简洁牺牲了部分实用性,导致不足以达到某些工作的需要 2.大部分是实战课程弱化了其他技术点的不足,无法全面了解python,但是很多都是刚接触python的(很致命) 3.因为是录播课程导致某些问题不能及时去解决,没人交流(这个最烦) 所以真要把pyt
Python数据分析之pandas学习
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser
《MATLAB数据分析与挖掘实战》赠书活动
<MATLAB数据分析与挖掘实战>是泰迪科技在数据挖掘领域探索10余年经验总结与华南师大.韩山师院.广东工大.广技师 等高校资深讲师联合倾力打造的巅峰之作.全书以实践和实用为宗旨,深度与广度兼顾,实践与理论并举. 本书特色:本书作者从实践出发,结合大量数据挖掘工程案例及教学经验,以真实案例为主线,深入浅出介绍数据挖掘建 模过程中的有关任务:数据探索.数据预处理.分类与预测.聚类分析.时序预测.关联规则挖掘.智能推荐.偏差检测等. 因此,图书的编排以解决某个应用的挖掘目标为前
python 数据分析--pandas
接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维
热门专题
ffmpeg 视频合并 命令
Windows设置空白密码
nmf是降维还是聚类
maxscript 读取版本
如何查看redis的配置文件
arduino 网络 开关
duet display一直显示启动
jquery formatDate插件用法
rand和randi randn
怎么用bat更新svn
Service CRUD和Mapper CRUD
gunicorn logger 规定数量和大小
Squid proxy ntlm 认证
Rational rose怎么画活动图
template和block
java线程池消费数据
malloc 赋予的首地址可以变化
mongodb 用户show collections无权限
oracle数据库从一个用户迁移到另外一个用户
c 传递回调函数给c#