首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Python正态分布检验为nan
2024-10-03
Python怎么检验数据的正态分布
在对数据建模前,很多时候我们需要对数据做正态性检验,进而通过检验结果确定下一步的分析方案.下面介绍 Python 中常用的几种正态性检验方法: scipy.stats.kstest kstest 是一个很强大的检验模块,除了正态性检验,还能检验 scipy.stats 中的其他数据分布类型 kstest(rvs, cdf, args=(), N=20, alternative=’two_sided’, mode=’approx’, **kwds) 对于正态性检验,我们只需要手动设置三个参数即可:
Tests for normality正态分布检验
欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 医药统计项目可联系 QQ:231469242 目录: 1.Sh
python+正态分布+蒙特卡洛预测男女身高概率!
sklearn实战-乳腺癌细胞数据挖掘 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 医药统计项目联系QQ:231469242 正态分布也称常态分布或常态分配,是连续随机变量概率分布的一种,是在数理统计的理论与实际应用中占有重要地位的一种理论分布.自然界人类
python异常值检验实战2_医美手术价格
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 测试数据结果:用非B4数据 肉毒素-横力 申请金额 是市场价格 平均倍数 4.4 最高16.666 最低0.433 B4状态5.14倍 最高16.666 最低0.4
python None 和 NaN
python原生的None和pandas, numpy中的numpy.NaN尽管在功能上都是用来标示空缺数据.但它们的行为在很多场景下确有一些相当大的差异.由于不熟悉这些差异,曾经给我的工作带来过不少麻烦. 特此整理了一份详细的实验,比较None和NaN在不同场景下的差异. 实验的结果有些在意料之内,有些则让我大跌眼镜.希望读者看过此文后会None和NaN这对“小妖精”有更深的理解. 为了理解本文的内容,希望本文的读者需要对pandas的Series使用有一定的经验. 首先,导入所需的库 In[
Python中pandas模块解析
Pandas基于两种数据类型: series 与 dataframe . 1.Series 一个series是一个一维的数据类型,其中每一个元素都有一个标签.类似于Numpy中元素带标签的数组.其中,标签可以是数字或者字符串. import numpy as np import pandas as pd s = pd.Series([1, 2, 5, np.nan, 6, 8]) print(s) 输出: 0 1.0 1 2.0 2 5.0 3 NaN 4 6.0
像Excel一样使用python进行数据分析
Excel是数据分析中最常用的工具,本篇文章通过python与excel的功能对比介绍如何使用python通过函数式编程完成excel中的数据处理及分析工作.在Python中pandas库用于数据处理 ,我们从1787页的pandas官网文档中总结出最常用的36个函数,通过这些函数介绍如何通过python完成数据生成和导入,数据清洗,预处理,以及最常见的数据分类,数据筛选,分类 汇总,透视等最常见的操作. 文章内容共分为9个部分.这是第一篇,介绍前3部分内容,数据表生成,数据表查看,和数据清洗.
从Excel到Python:最常用的36个Pandas函数
本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入.数据清洗.预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作. 生成数据表 常见的生成数据表的方法有两种,第一种是导入外部数据,第二 种是直接写入数据.Excel中的"文件"菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入. Python支持从多种类型的数据导入.在开始使用Python进行数据 导入前需要先导入pandas库,为了方便起见,我们也同时导入numpy
python_数据分析_正态分布
Kolmogorov-Smirnov 与 Shapiro-Wilk 模型正态分布检验 Spss stata R语言正态分布 install.packages("nortest") R中stats包中内置的ks.test(),可以用于检验标准分布,但这个检验方法效率并不高,且需要在大样本情形下,lz20个数据,.. 这....当时这个ks.test就是最原始的KS检验,至于lz想要在SPSS中得到相同的结果,please choose 非参检验,当然如果lz想要在R中得到与你之前spss
Python验证数据的抽样分布类型
假如要对一份统计数据进行分析,一般其来源来自于社会调研/普查,所以数据不是总体而是一定程度的抽样.对于抽样数据的分析,就可以结合上篇统计量及其抽样分布的内容,判断数据符合哪种分布.使用已知分布特性,可以完成对总体的统计分析. 本文使用python函数判断数据集是否符合特定抽样分布. 数据来源 本次试验使用kagglehttps://www.kaggle.com/datasets上的公开数据集,可以通过搜索框进行数据集搜索. 通过搜索「income」关键值,最后决定使用https://www.ka
关于Excel,你一定用的到的36个Python函数
从Excel到Python:最常用的36个Pandas函数关于Excel,你一定用的到的36个Python函数 本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入.数据清洗.预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作. 生成数据表 常见的生成数据表的方法有两种,第一种是导入外部数据,第二种是直接写入数据. Excel中的“文件”菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入. Python支持从多种类型的数据导入.
python 文件操作(转)
python中对文件.文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块. 得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd() 返回指定目录下的所有文件和目录名:os.listdir() 函数用来删除一个文件:os.remove() 删除多个目录:os.removedirs(r“c:\python”) 检验给出的路径是否是一个文件:os.path.isfile() 检验给出的路径是否是一个目录:os.path.isdir() 判断是否是绝对路径:os.
python文件操作
总是记不住API.昨晚写的时候用到了这些,但是没记住,于是就索性整理一下吧: python中对文件.文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块. 得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd() 返回指定目录下的所有文件和目录名:os.listdir() 函数用来删除一个文件:os.remove() 删除多个目录:os.removedirs(r“c:\python”) 检验给出的路径是否是一个文件:os.path.isfile() 检验给出的
python对文件的操作
一.python中对文件.文件夹操作时经常用到的os模块和shutil模块常用方法. 1.得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd() 2.返回指定目录下的所有文件和目录名:os.listdir() 3.函数用来删除一个文件:os.remove() 4.删除多个目录:os.removedirs(r"c:\python") 5.检验给出的路径是否是一个文件:os.path.isfile() 6.检验给出的路径是否是一个目录:os.path.isdir(
python之路三
集合 set拥有类似dict的特点:可以用{}花括号来定义:其中的元素没有序列,也就是是非序列类型的数据;而且,set中的元素不可重复,这就类似dict的键. set也有继承了一点list的特点:如可以原处修改 集合的操作: #创建集合list_1 = {1,2,3,4,5}list_2 = {6,7,8,9,0,1,2} print (list_1 | list_2) #并集,去除重复项 print(list_1 & list_2) #交集,打印重复项 print(list_1 - l
python file operations
原文地址 总是记不住API.昨晚写的时候用到了这些,但是没记住,于是就索性整理一下吧: python中对文件.文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块. 得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd() 返回指定目录下的所有文件和目录名:os.listdir() 函数用来删除一个文件:os.remove() 删除多个目录:os.removedirs(r"c:\python") 检验给出的路径是否是一个文件:os.path.isfi
T检验与F检验的区别_f检验和t检验的关系
1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.很罕有的情况下才出现:那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒
关于Python中的文件操作(转)
总是记不住API.昨晚写的时候用到了这些,但是没记住,于是就索性整理一下吧: python中对文件.文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块. 得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd() 返回指定目录下的所有文件和目录名:os.listdir() 函数用来删除一个文件:os.remove() 删除多个目录:os.removedirs(r"c:\python") 检验给出的路径是否是一个文件:os.path.isfile()
通俗理解T检验和F检验
来源: http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html 1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,
Python 文件处理
文件夹: 得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd() 返回指定目录下的所有文件和目录名:os.listdir() 函数用来删除一个文件:os.remove() 删除多个目录:os.removedirs(r“c:\python”) 检验给出的路径是否是一个文件:os.path.isfile() 检验给出的路径是否是一个目录:os.path.isdir() 判断是否是绝对路径:os.path.isabs() 检验给出的路径是否真地存:os.path.exists
热门专题
codeblocks如何引用其他.a文件
人脸识别无法打开相机
springboot动态加载类
ideamysql代码提示
laravel 执行app/listeners
html版权信息如何显示在底部
ubuntu 移动系统到固态
c语言 unused
renren后端 生产 部署
什么是单线程多路io
windows 伪造mac地址
vue3 ts 全局方法
mysql如何保存稀疏矩阵
编辑 etc sysctl.conf文件中交换分区比例
phpexcel 导出发邮件
js 数组删除后2项
Linux irq 唤醒
java递归方法return布尔值不出去是为什么
sqlserver 不允许远程写入
docker安装asterisk