多进程 进程之间是相互独立的,python是启动进程的时候,是启动的是原生进程.进程是没有GIL锁的,而且不存在锁的概念,进程之间的数据式不能共享的,而线程是可以的. 1.进程的定义 用muliprocessing这个包中的Process来定义多进程,跟定义多线程类似 from multiprocessing import Process # 导入进程模块 import time def run(name): time.sleep(2) print("hello", name) if
一,共享数据 展望未来,基于消息传递的并发编程是大势所趋 即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合 通过消息队列交换数据.这样极大地减少了对使用锁定和其他同步手段的需求, 还可以扩展到分布式系统中 进程间通信应该尽量避免使用本节所讲的共享数据的方式 进程间数据是独立的,可以借助于队列或管道实现通信,二者都是基于消息传递的 虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此 A manager object returned by Ma
import time import os import multiprocessing from multiprocessing import Queue, pool """ 一.Python 使用多进程实现并发编程: 因为cpython解释器中有GIL存在的原因(每个进程都会维护一个GIL,jpython解释器没有这个问题),所以在一个进程内, 即使服务器是多核cpu,同一时刻只能有一个线程在执行任务(一个进程内).如果存在较多IO,使用多线程是可以提高处理速度的, 但是
一.守护进程 1.主进程创建守护进程 其一:守护进程会在主进程代码执行结束后就终止 其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children 注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止 2.程序核心表现: p.daemon=True 注意要求:一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行
#练习:进程间共享实例 import time,os import random from multiprocessing import Pool,Value,Lock,Manager from multiprocessing.managers import BaseManager class MyManager(BaseManager): pass def Manager(): m=MyManager() m.start() return m class Counter(object): de