首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Python科学计算库-Numpy
2024-09-03
python科学计算库的numpy基础知识,完美抽象多维数组(原创)
#导入科学计算库 #起别名避免重名 import numpy as np #小技巧:从外往内看==从左往右看 从内往外看==从右往左看 #打印版本号 print(np.version.version) #1.16.2 #声明一个numpy数组,一层list nlist = np.array([1,2,3]) print(nlist) #[1 2 3] #ndim方法用来查看数组的属性--维度 print(nlist.ndim) #1 #使用shape属性来打印多维数组的形状,返回一个tuple,
Python科学计算库Numpy
Python科学计算库Numpy NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. 1.简介 Numpy是常用的科学计算库. NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引. ndarray 对象是用于存放同类型元素的多维数组. 使用array函数可以创建ndarray对象. numpy.array(o
python科学计算库numpy和绘图库PIL的结合,素描图片(原创)
# 导入绘图库 from PIL import Image #导入科学计算库 import numpy as np #封装一个图像处理工具类 class TestNumpy(object): def photo2paint(self,img_url): #读取图片,asarray()转矩阵 convert('L')转变成像素化 astype()转元素类型 my_photo = np.asarray(Image.open(img_url).convert('L')).astype('float')
[Python学习] python 科学计算库NumPy—矩阵运算
NumPy库的核心是矩阵及其运算. 使用array()函数可以将python的array_like数据转变成数组形式,使用matrix()函数转变成矩阵形式. 基于习惯,在实际使用中较常用array而少用matrix来表示矩阵. 然后即可使用相关的矩阵运算了 import numpy as np a = [[1,2,3],[4,5,5],[4,5,5]] len = a.shape[0] #多维数组的行数 print(a.dtype) #输出元素类型 #另外也还可以使用切片方式来处理数组 然后是
Python科学计算库-Numpy
NumPy 是 Python 语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,也是学习 python 必学的一个库. 1. 读取文件 numpy.genfromtxt() 用于读取 txt 文件,其中传入的参数依次为: 需要读取的 txt 文件位置,此处文件与程序位于同一目录下 分割的标记 转换类型,如果文件中既有文本类型也有数字类型,就先转成文本类型 help(numpy.genfromtxt)用于查看帮助文档: 如果不想看 API 可以启动一个
Python 科学计算库numpy
Numpy基础数据结构 NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的元数 # 多维数组ndarray import numpy as np ar = np.array([1,2,3,4,5,6,7])print(ar) # 输出数组,注意数组的格式:中括号,元素之间没有逗号(和列表区分)print(ar.ndim) # 输出数组维度的个数(轴数),或者说“秩”,维度的数量也称rankprint(ar.shape)
[Python学习] python 科学计算库NumPy—tile函数
在学习knn分类算法的过程中用到了tile函数,有诸多的不理解,记录下来此函数的用法. 函数原型:numpy.tile(A,reps) #简单理解是此函数将A进行重复输出 其中A和reps都是array_like的参数,A可以是:array,list,tuple,dict,matrix以及基本数据类型int,string,float以及bool类型,reps的类型可以是tuple,list,dict,array,int,bool,但不可以是float,string,matrix类型. 计较常
Python科学计算库
Python科学计算库 一.numpy库和matplotlib库的学习 (1)numpy库介绍:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成,并可与C++/Fortran语言无缝结合 np.array([1,2,3])列表转换为数组:np.array((1,2,3))元组转换为数组; np.array(range(5))把range对象转换为数组:np.arange(8)类似于内置的range()函数 np.linspace(0,10,
科学计算库Numpy基础&提升(理解+重要函数讲解)
Intro 对于同样的数值计算任务,使用numpy比直接编写python代码实现 优点: 代码更简洁: numpy直接以数组.矩阵为粒度计算并且支持大量的数学函数,而python需要用for循环从底层实现: 性能更高效: numpy的数组存储效率和输入输出计算性能,比python使用list好很多,用numpy进行计算要比原生Python快得多,而且数据量越大,效果越明显:numpy的大部分代码都是c语言实现的,这是numpy比python高效的原因 numpy核心:ndarray对象 ndar
python科学计算之numpy
1.np.logspace(start,stop,num): 函数表示的意思是;在(start,stop)间生成等比数列num个 eg: import numpy as np print np.logspace(,,) 结果为: [ 10. 100. 1000. 10000.] 2. np.fromstring('admin',dtype=np.int8):函数的作用是将字符串装换成对应的ascii值 import numpy as np print np.fromstring
热门专题
vue-codemirror代码提示
js控制css3动画触发
java date 判断 am pm
Linux服务器boot启动项没有usb选项怎么办
苹果Mac 硬件信息 软件
crt日志文件自动保存设置
idea 集成thrift插件
ffmpeg查看音频
console口怎么登录交换机
scrapy 开启日志会影响速度吗
如何重置ubuntu20.04所有网络设置
host driver是啥
highcharts好看的饼图颜色
git 一定时间代码量
modulenotfounderror解决方案 mac
keilC51修改数据大端小端存储模式
Java 获取excel 统一字符串处理
es 创建索引的时候分片和副本有啥用
con1d(7,256,activition)参数什么意思
abap访问ftp文件服务器url