python利用决策树进行特征选择(注释部分为绘图功能),最后输出特征排序: import numpy as np import tflearn from tflearn.layers.core import dropout from tflearn.layers.normalization import batch_normalization from tflearn.data_utils import to_categorical from sklearn.model_selection i
发现帮助新手入门机器学习的一篇好文,首先感谢博主!:用Python开始机器学习(2:决策树分类算法) J. Ross Quinlan在1975提出将信息熵的概念引入决策树的构建,这就是鼎鼎大名的ID3算法.后续的C4.5, C5.0, CART等都是该方法的改进. 熵就是“无序,混乱”的程度.刚接触这个概念可能会有些迷惑.想快速了解如何用信息熵增益划分属性,可以参考这位兄弟的文章:http://blog.csdn.net/alvine008/article/details/37760639 数据
使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_iris from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors
Refer to the DecisionTree Python docs and DecisionTreeModel Python docs for more details on the API. from pyspark.mllib.tree import DecisionTree, DecisionTreeModel from pyspark.mllib.util import MLUtils # Load and parse the data file into an RDD of L
一.概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点.而C4.5引入了新概念"信息增益率",C4.5是选择信息增益率最大的属性作为树节点. 二.信息增益 以上公式是求信息增益率(ID3的知识点) 三.信息增益率 信息增益率是在求出信息增益值在除以. 例如下面公式为求属性为"outlook"的值: 四.C4.5的完整代码 from numpy import * from scipy import * from mat
由于上一例的实现中只针对了离散数据,为了扩充处理范围,我实现了一下对线性数据的简单处理,在其中我选择用中位数作为指标,平均数.众数等等其他数据在我看来异曲同工,最终也都会有较相似的结构. 求连续数据的香农熵 def calcLinerData(dataSet): num=len(dataSet) count={1:0,0:0} shannonEnt=0.0 for i in range(num): feature = [ example[-1] for example in dataSet] f