首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python 处理数据性能
2024-09-03
提高python处理数据的效率方法
处理大数据的方法有很多,目前我知道就这么多,后面会持续更新: 一.将数据分批次读取 csv格式是常见的数据存储方式,对于我们普通人而言易于读写.此外,在pandas中有pd.read_csv()函数可以将csv形式的数据进行读取.但当csv文件非常大的时候,直接读取会很吃内存,甚至会出现内存不够用的情况. 这时候我们可以 分批次(分块)读取,而不是一次性读取 这么大体量的数据.操作步骤: 分批次读取 处理每一批次 保存每一批次的结果 对所有的数据重复步骤1-3 将所有的批次结果都结合起来 pd.
常用排序算法的python实现和性能分析
常用排序算法的python实现和性能分析 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试题整了一下,可以阶段性的留下些脚印——没办法,平时太忙,基本上没有时间写博客.面试测试开发的话,这些也许能帮得上一些. 这篇是关于排序的,把常见的排序算法和面试中经常提到的一些问题整理了一下.这里面大概有3个需要提到的问题: 虽然专业是数学,但是自己还是比较讨厌繁琐的公式,所以基本上文章所有的逻辑,
python爬虫+数据可视化项目(关注、持续更新)
python爬虫+数据可视化项目(一) 爬取目标:中国天气网(起始url:http://www.weather.com.cn/textFC/hb.shtml#) 爬取内容:全国实时温度最低的十个城市气温排行榜 使用工具:requests库实现发送请求.获取响应. beautifulsoup实现数据解析.提取和清洗 pyechart模块实现数据可视化 爬取结果:柱状图可视化展示: 直接放代码(详细说明在注释里,欢迎同行相互交流.学习~): import requests from bs4 impo
MySQL实验准备(二)--Python模拟数据(MySQL数据库)
Python模拟数据(MySQL数据库) 数据模拟 目的:模拟多个表的插入和查询数据的模拟,再通过基准测试脚本测试服务器性能和收集数据,仿真模拟. 备注: 如果需要基础的python环境,可以查看<MySQL实验准备(一)--环境准备>文档 实验脚本 通过对一个简单表的脚本插入和查询模拟,后面能 举一反三,完成多张表的多表插入,多线程的多表插入,多线程查询,和多线程的join查询. 数据库的表结构 mysql> show create table zdemo.student; +----
Python小数据池,代码块
今日内容一些小的干货 一. id is == 二. 代码块 三. 小数据池 四. 总结 python小数据池,代码块的最详细.深入剖析 一. id is == 二. 代码块 三. 小数据池 四. 总结 一,id,is,== 在Python中,id是什么?id是内存地址,比如你利用id()内置函数去查询一个数据的内存地址: name = '太白' print(id(name)) # 1585831283968 那么 is 是什么? == 又是什么? == 是比较的两边的数值是否相等,而 is
《零起点,python大数据与量化交易》
<零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库·zw大数据"项目,刚刚启动. 因为时间紧,只花了半天时间,整理框架和目录. 说是v0.1版,但核心框架已经ok:从项目角度而言,完成度,已经超过70%,剩下的只是体力活. 完成全本书,需要半年以上连续时间,本人没空,大家不要再问:"什么时间可以完成." 配合zwPython,这
【Python】常用排序算法的python实现和性能分析
作者:waterxi 原文链接 背景 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试题整了一下,可以阶段性的留下些脚印——没办法,平时太忙,基本上没有时间写博客.面试测试开发的话,这些也许能帮得上一些. 这篇是关于排序的,把常见的排序算法和面试中经常提到的一些问题整理了一下.这里面大概有3个需要提到的问题: 虽然专业是数学,但是自己还是比较讨厌繁琐的公式,所以基本上文章所有的逻辑,我都
面试中常用排序算法的python实现和性能分析
这篇是关于排序的,把常见的排序算法和面试中经常提到的一些问题整理了一下.这里面大概有3个需要提到的问题: 虽然专业是数学,但是自己还是比较讨厌繁琐的公式,所以基本上文章所有的逻辑,我都尽可能的用大白话说,希望能说明白: 语言使用的是Python,原因是写的快一些,当然会尽可能的抛开一些Python的特点,比如数组处理的时候尽可能的不使用一些tuple交换等方式: 测试算法的时候会用到一些Python编程的技巧,这里只是简单的提一下,不做深入介绍: 常用的排序算法(主要指面试中)包含两大类,一类是
python 小数据池,代码块, is == 深入剖析
python小数据池,代码块的最详细.深入剖析 一. id is == 二. 代码块 三. 小数据池 四. 总结 一,id,is,== 在Python中,id是什么?id是内存地址,那就有人问了,什么是内存地址呢? 你只要创建一个数据(对象)那么都会在内存中开辟一个空间,将这个数据临时加在到内存中,那么这个空间是有一个唯一标识的,就好比是身份证号,标识这个空间的叫做内存地址,也就是这个数据(对象)的id,那么你可以利用id()去获取这个数据的内存地址: name = '太白' print(i
python的数据缓存
Python的数据缓存 python 的内置数据类型,数值型,字符串,列表,字典等都会有自己的对象缓存池, 这样做的好处是,避免了频繁的申请内存,释放内存,这样会极大的降低应用程序的运行速度,还会造成大量的内存碎片.因此提供对象缓存机制是非常重要的. 在Python中,字符串和整型对象都是不可变的(immutable)类型,因此Python会很高效地缓存它们.这样的处理机制能提升Python的性能.因此,我们看到下面示例中str1和str2也都是指向同一块内存地址: str1='a' str2=
python和数据科学(Anaconda)
Python拥有着极其丰富且稳定的数据科学工具环境.遗憾的是,对不了解的人来说这个环境犹如丛林一般(cue snake joke).在这篇文章中,我会一步一步指导你怎么进入这个PyData丛林. 你可能会问,很多现有的PyData包推荐列表怎么样?我觉得对新手来说提供太多的选择可能会受不了.因此这里不会提供推荐列表,我要讨论的范围很窄,只集中于10%的工具,但它们可以完成你90%的工作.当你掌握这些必要的工具后,你就可以浏览PyData工具的长列表了,选择自己接下来要使用的. 值得一提的是,我介
EF批量添加数据性能慢的问题的解决方案
//EF批量添加数据性能慢的问题的解决方案 public ActionResult BatchAdd() { using (var db = new ToneRoad.CEA.DbContext.DbContext()) { //**********************第一种解决方案 直接使用sql********************** string sqls = ""; ; i < ; i++) { sqls += "sql" + i; } db.
用 Python 排序数据的多种方法
用 Python 排序数据的多种方法 目录 [Python HOWTOs系列]排序 Python 列表有内置就地排序的方法 list.sort(),此外还有一个内置的 sorted() 函数将一个可迭代对象(iterable)排序为一个新的有序列表. 本文我们将去探索用 Python 做数据排序的多种方法. 排序基础 简单的升序排序非常容易:只需调用 sorted() 函数,就得到一个有序的新列表: 你也可以使用 list.sort() 方法,此方法为就地排序(并且返回 None 来避免混淆).
SQLServer通过链接服务器远程删除数据性能问题解决
原文:SQLServer通过链接服务器远程删除数据性能问题解决 在上一遍文章中介绍了SQLServer通过链接服务器访问Oracle性能问题的解决方法,本文介绍链接服务器下远程删除SQLServer数据的性能问题解决 1. 问题发现 系统中有个功能,需要远程删除SQLServer实例的表数据,删除语句中有where条件,条件中有一个子查询. 该功能前台执行速度非常慢.所以准备调优. 下面为演示代码,未优化前如下: DELETE FROM [LINKSERVERNAME].[AdventureWo
python调用数据返回字典dict数据的现象2
python调用数据返回字典dict数据的现象2 思考: 话题1连接:https://www.cnblogs.com/zwgbk/p/10248479.html在打印和添加时候加上内存地址id(),可以查看结果.可以得出结论:1.在make()函数里,生成数据的两种不同赋值方式. 1.1第一种情况,是在一个内存地址生成了一个空的字典.随后每次调用数据时候改变这个内存地址的里的数据. 1.2第二种情况,是在每次调用数据的时候,都生成不同内存地址的字典.2.添加进list后,并不是把数据直接保存在l
python调用数据返回字典dict数据的现象1
python调用数据返回字典dict数据的现象1 思考: 可以看到这两种情况,区别在于构造函数make()里赋值给字典dict的方式不同.使用相同的调用方式,而结果却完全不同.可以看到第二种情况才是我们想要的结果.目前不知道第一种情况为何会出现这样的结果,是何种原因造成的?话题2:https://www.cnblogs.com/zwgbk/p/10251909.html 说明: 第一种情况 键入代码: def make(): dict= { 'a': None } for a in range(
python 小数据池,is and "==",decode ,encode
一:小数据池 1.python运行中的缓存: 2.目的:缓存我们字符串,整数,布尔值.在使用的时候不需要创建过多的对象 3.python 缓存数据:缓存:int, str, bool. int: 缓存范围 -5~256 str: 1. 长度小于等于1,直接缓存 2. 长度大于1. 字符串中如果只有数字, 字母, 下划线. 就会缓存 3. 乘以1. 同上, 乘以大于
【转】Python用数据说明程序员需要掌握的技能
[转]Python用数据说明程序员需要掌握的技能 https://blog.csdn.net/HuangZhang_123/article/details/80497951 当下是一个大数据的时代,各个行业都离不开数据的支持.因此,网络爬虫就应运而生.网络爬虫当下最为火热的是Python,Python开发爬虫相对简单,而且功能库相当完善,力压众多开发语言. 本次教程我们爬取前程无忧的招聘信息来分析Python程序员需要掌握那些编程技术.首先在谷歌浏览器打开前程无忧的首页,按F12打开浏览器的开发
数据挖掘(二)用python实现数据探索:汇总统计和可视化
今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处理,另一方面在进行特征工程时可以给我们一些思路.所以这样一个过程在数据挖掘中还是蛮有用的,相信大家在网上看过不少数据挖掘比赛的Kernel,一般一上来都先是个数据探索的过程.之前听过一个老师讲课,说数据探索过程其实可有可无,直接预处理猛搞,但典型的口嫌体正直,在演示一个比赛的流程时,还是先进行了汇总
【转】Python之数据序列化(json、pickle、shelve)
[转]Python之数据序列化(json.pickle.shelve) 本节内容 前言 json模块 pickle模块 shelve模块 总结 一.前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Python也是一样.很多时候我们会有这样的需求: 把内存中的各种数据类型的数据通过网络传送给其它机器或客户端: 把内存中的各种数据类型的数据保存到本地磁盘持久化: 2.数据格式 如果要将一个系统内的数据通过网络传输给其它系统或客户
Python处理数据
由于找实习,要学习python处理数据,python连接mysql,python读写文件,python读写xlsx文件,这些只要引入了相关的包,就非常容易,处理过程非常清晰.模块如果封装的好,没怎么学过编程的人也很容易上手. 就把python当做自行车用,用脚本处理一些重复性的工作非常便捷,但程序就是写不长,但是这些脚本已经能够完成我们的工作了.另外,pycharm真的很好用,不仅体现在代码自动提示,还在安装外部库时非常方便.
热门专题
Apple security黑客正在跟踪您
python验证码识别库
服务器进入 nginx.conf命令
deep speech模型和语言模型和集束搜索
jquery按钮点击改变背景
HTTP那种状态会发两次请求
elementui 表格获取checkbox
qq直登号怎么做出来的
preset-es2015 有箭头函数
oracle如何用一张表的值更新另外一张表的值
c# Math.Round 怎么始终是整数
基于dht11温湿度传感器电路主程序流程
python 列表去掉空元素
lsf中lsload主机名显示不全
一个电脑安装多个ndoe
owncloud不同步
cisco 标准acl 号码
source insight project窗口嵌入到
python 比特串异或
cia402回零方式