首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python 机器学习 计算 互信息
2024-11-05
神经网络高维互信息计算Python实现(MINE)
论文 Belghazi, Mohamed Ishmael, et al. " Mutual information neural estimation ." International Conference on Machine Learning . 2018. 利用神经网络的梯度下降法可以实现快速高维连续随机变量之间互信息的估计,上述论文提出了Mutual Information Neural Estimator (MINE).NN在维度和样本量上都是线性可伸缩的,MI的计算可以通
Python机器学习笔记:常用评估指标的用法
在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict和y_true之间的某种“距离”得出的. 对学习器的泛化性能进行评估,不仅需要有效可行的试验估计方法,还需要有衡量模型泛化能力的评估价标准,这就是性能度量(performance measure).性能度量反映了任务需求,在对比不同模型的能力时,使用不同的性能度量往往会导致不的评判结果:这意味着模型的“好坏”是相对的,什么样的模型是好的,不仅取决于算法和数据,还决定于任务需求. 性能指标往往使我们
Python机器学习笔记:不得不了解的机器学习知识点(2)
之前一篇笔记: Python机器学习笔记:不得不了解的机器学习知识点(1) 1,什么样的资料集不适合用深度学习? 数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势. 数据集没有局部相关特性,目前深度学习表现比较好的领域主要是图像/语音/自然语言处理等领域,这些领域的一个共性是局部相关性.图像中像素组成物体,语音信号中音位组合成单词,文本数据中单词组合成句子,这些特征元素的组合一旦被打乱,表示的含义同时也被改变.对于没有这样的局部相关性的数据集,不适于使用深度学习算法进行处理
【Python机器学习实战】决策树和集成学习(一)
摘要:本部分对决策树几种算法的原理及算法过程进行简要介绍,然后编写程序实现决策树算法,再根据Python自带机器学习包实现决策树算法,最后从决策树引申至集成学习相关内容. 1.决策树 决策树作为一种常见的有监督学习算法,在机器学习领域通常有着不错的表现,决策树在生活中决策去做某件事时,会根据自己的经验考虑到多种因素,那么在程序逻辑中使用if~else的堆叠,决定最终结果的过程其实就算是决策树的一种体现,如下图(举个不太恰当的例子).学术一点来说,决策树就是根据以往发生的事的概率,来评估风险,作出
常用python机器学习库总结
开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Python工具包可供使用,所以作为Pythoner,也是相当幸福的.如果仔细留意微博和论坛,你会发现很多这方面的分享,自己也Google了一下,发现也有同学总结了"Python机器学习库",不过总感觉缺少点什么.最近流行一个词,全栈工
[Python] 机器学习库资料汇总
声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播)函数库: 用于整合C/C++和Fortran代码的工具包: 实用的线性代数.傅里叶变换和随机数生成函数. SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化.线性代数.积分.插值.特殊函数.快速傅里叶变换.信号处理和图像处理.常微分方程求解和其他科
windows下安装python科学计算环境,numpy scipy scikit ,matplotlib等
安装matplotlib: pip install matplotlib 背景: 目的:要用Python下的DBSCAN聚类算法. scikit-learn 是一个基于SciPy和Numpy的开源机器学习模块,包括分类.回归.聚类系列算法,主要算法有SVM.逻辑回归.朴素贝叶斯.Kmeans.DBSCAN等,目前由INRI 资助,偶尔Google也资助一点. SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化.线性代数.积分.插值.特殊函数.快速傅里叶变换.信号处
python机器学习《回归 一》
唠嗑唠嗑 依旧是每一次随便讲两句生活小事.表示最近有点懒,可能是快要考试的原因,外加这两天都有笔试和各种面试,让心情变得没那么安静的敲代码,没那么安静的学习算法.搞得第一次和技术总监聊天的时候都不太懂装饰器这个东东,甚至不知道函数式编程是啥:昨天跟另外一个经理聊天的时候也是没能把自己学习的算法很好的表达出来,真是饱暖思**啊.额,好像用词不当,反正就是人的脑袋除了想着吃肉还要多运动运动,幸好的是每天晚上的瑜伽能够让自己足够沉下心来冷静冷静.回想起当初的各种面试,现在的自己毫无疑问能够很好的表达那
[resource]Python机器学习库
reference: http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播)函数库: 用于整合C/C++和Fortran代码的工具包: 实用的线性代数.傅里叶变换和随机数生成函数. SciPy是一个开源的Python算法库和数学工具包,S
Python机器学习包
常用Python机器学习包 Numpy:用于科学计算的包 Pandas:提供高性能,易于使用的数据结构和数据分析工具 Scipy:用于数学,科学工程的软件 StatsModels:用于探索数据.估计统计模型.统计检验 Scikit-learn:提供经典的机器学习算法用于数据挖掘和数据分析 matplotlib:2D绘图库,可绘制高质量的图片 Windows安装Python机器学习包网址:http://dblab.xmu.edu.cn/blog/python-machine-learning-pa
python机器学习实战(一)
python机器学习实战(一) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7140974.html 前言 这篇notebook是关于机器学习中监督学习的k近邻算法,将介绍2个实例,分别是使用k-近邻算法改进约会网站的效果和手写识别系统.操作系统:ubuntu14.04 运行环境:anaconda-python2.7-notebook 参考书籍:机器学习实战 notebook writer ----方阳 k-
python机器学习实战(二)
python机器学习实战(二) 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7159775.html 前言 这篇notebook是关于机器学习中的决策树算法,内容包括决策树算法的构造过程,使用matplotlib库绘制树形图以及使用决策树预测隐形眼睛类型. 操作系统:ubuntu14.04(win也ok) 运行环境:anaconda-python2.7-jupyter notebook 参考书籍:机器学习实战和
python机器学习实战(三)
python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7277205.html 前言 这篇notebook是关于机器学习中基于概率论的分类方法--朴素贝叶斯,内容包括朴素贝叶斯分类器,垃圾邮件的分类,解析RSS源数据以及用朴素贝叶斯来分析不同地区的态度. 操作系统:ubuntu14.04 运行环境:anaconda-python2.7-jupyter notebook 参考书籍:机器学习实战和源码,机器学习(周志
python机器学习实战(四)
python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7364317.html 前言 这篇notebook是关于机器学习中logistic回归,内容包括基于logistic回归和sigmoid分类,基于最优化方法的最佳系数确定,从疝气病症预测病马的死亡率.操作系统:ubuntu14.04 运行环境:anaconda-python2.7-jupyter notebook 参考书籍:机器学习实战和源码 noteb
你不得不看的Python机器学习工具
IEEE Spectrum排行榜第一,Skill UP排名第一的开发工具,Stack Overflow年度调查中程序员最感兴趣的选择,Stack Overflow 6月份访问量最多的编程语言......没错,这些盛誉都指向了一个编程语言--Python. Python在科学计算中用途广泛:计算机视觉.人工智能.数学.天文等.它同样适用于机器学习也是意料之中的事.这里将列举并描述Python的最有用的机器学习工具和库. 另外,尽管有些模块可以用于多种机器学习任务,在这里只列出主要焦点在机器学习的库
Python机器学习:5.6 使用核PCA进行非线性映射
许多机器学习算法都有一个假设:输入数据要是线性可分的.感知机算法必须针对完全线性可分数据才能收敛.考虑到噪音,Adalien.逻辑斯蒂回归和SVM并不会要求数据完全线性可分. 但是现实生活中有大量的非线性数据,此时用于降维的线性转换手段比如PCA和LDA效果就不会太好.这一节我们学习PCA的核化版本,核PCA.这里的"核"与核SVM相近. 运用核PCA,我们能将非线性可分的数据转换到新的.低维度的特征子空间,然后运用线性分类器解决. 核函数和核技巧 还记得在核SVM那里,我们讲过解决非
Python机器学习笔记 K-近邻算法
K近邻(KNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一. 所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.KNN算法的核心思想是如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特征.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别.KNN方法在类别决策时,只与极少数的相邻样本有关.由于kNN方法主要靠周围有限的邻近的
python机器学习-sklearn挖掘乳腺癌细胞(五)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 模型验证 分类器好坏验证,模型建立好后,不是万事大吉,需要进行crossvalidation, AUC,GINi,KS,Ga
只需十四步:从零开始掌握 Python 机器学习(附资源)
分享一篇来自机器之心的文章.关于机器学习的起步,讲的还是很清楚的.原文链接在:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源.你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了.本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:suo.im/KUWgl 和
Python机器学习笔记:使用Keras进行回归预测
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何使用Keras创建一个回归问题的神经网络模型,如何使用scikit-learn和Keras一起使用交叉验证来评估模型,如何进行数据准备以提高Keras模型的技能,如何使用Keras调整模型的网络拓扑. 前期准备之Keras的scikit-learn接口包装器 Git地址:https://github
Python机器学习笔记:sklearn库的学习
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归
热门专题
rabbitmq 从Message 获取对象
vue 嵌套打开网页
apollo配置中心原理
classification 正则化
Jetty(7.6.9.v20130131)下载
clr.dll模块故障
Linux如何查看光口
matlab7.1安装后打不开
timeline uview 横向
linux 修改子进程名
web form表单提交到另一个页面
xilinx三速以太网ip核
android ndk音频文件的播放暂停
SimpleAsyncTaskExecutor不执行
android studio 快捷键优化导入的类和包
怎么把网页制作成可以在手机,平板电脑,电脑上
Extension Object模式
python中sn.heatmap画混淆矩阵
ng-class 动态赋值
tomcat启动权限