首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python,确定数据是什么分布
2024-09-03
python数据分析之数据分布
转自链接:https://blog.csdn.net/YEPAO01/article/details/99197487 一.查看数据分布趋势 import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline #读取源数据 df = pd.read_csv('http://jse.amstat.org/datasets/normtemp.dat.txt', header=None, s
Python解决数据样本类别分布不均衡问题
所谓不平衡指的是:不同类别的样本数量差异非常大. 数据规模上可以分为大数据分布不均衡和小数据分布不均衡.大数据分布不均衡:例如拥有1000万条记录的数据集中,其中占比50万条的少数分类样本便于属于这种情况.小数据分布不均衡:例如拥有1000条数据样本的数据集中,其中占有10条的少数分类样本便于属于这种情况. 样本类别分布不平衡主要出现在分类问题的建模上.导致样本量少的分类所包含的特征过少,很难从中提取规律:即使得到分类模型,也容易产生过度依赖于有限的数据样本而导致过拟合的问题,当模型应用到新的数
Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图
conda install seaborn 是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / set_style() / axes_style() / despine() / set_context() import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns % ma
Python分类统计数据
在数据的常见分布中,有一种是一对多存储的数据,即一个是key,其他改key对应的多个value.例如气象数据等,每天有很多组,又或者是一个球员,他每天得多少分等等.我做这个东西有三种方法,即:常规编程法,数据库查询法以及pandas包提供的group方法.第一种方法我自己写出的代码比较繁琐,这里不做介绍. 示例数据如下,统计每天对应的level的均值及方差等. Date level 2014/6/10 8.11 2014/6/10 8.02 2014/6/11 8.04 2014/6/11
数据挖掘(二)用python实现数据探索:汇总统计和可视化
今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处理,另一方面在进行特征工程时可以给我们一些思路.所以这样一个过程在数据挖掘中还是蛮有用的,相信大家在网上看过不少数据挖掘比赛的Kernel,一般一上来都先是个数据探索的过程.之前听过一个老师讲课,说数据探索过程其实可有可无,直接预处理猛搞,但典型的口嫌体正直,在演示一个比赛的流程时,还是先进行了汇总
《零起点,python大数据与量化交易》
<零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库·zw大数据"项目,刚刚启动. 因为时间紧,只花了半天时间,整理框架和目录. 说是v0.1版,但核心框架已经ok:从项目角度而言,完成度,已经超过70%,剩下的只是体力活. 完成全本书,需要半年以上连续时间,本人没空,大家不要再问:"什么时间可以完成." 配合zwPython,这
Python数据挖掘——数据概述
Python数据挖掘——数据概述 数据集由数据对象组成: 数据的基本统计描述 中心趋势度量 均值 中位数 众数 中列数 数据集的最大值和最小值的平均 度量数据分布 极差 最大值与最小值的差 四分位数 方差 四分位数极差 数据基本统计描述的图形显示 一元分布 分位数图 分位数-分位数图(q-q图) 直方图 二元分布 散点图 数据可视化 1.基于像素的可视化技术 2.几何投影可视化技术 3.基于图符的可视化技术 4.层次可视化技术 度量数据的相似性和相异性 相似 和相异 都称 邻近性 如果不相似,则
python上数据存储 .h5格式或者h5py
最近在做城市计算的项目,数据文件是以.h5的格式存储的,总结下其用法和特点 来自百度百科的简介: HDF(Hierarchical Data Format),可以存储不同类型的图像和数码数据的文件格式,并且可以在不同类型的机器上传输,同时还有统一处理这种文件格式的函数库.大多数计算机都支持这种文件格式. 目前常用的图像文件格式很多,如GIF,JPG,PCX,TIFF等.这些格式共同的缺点是结构太简单,不能存放除影像信息外其他的有用数据,像遥感影像的坐标值.参数等都无法在其中保存,而且用不同格式存
Python验证数据的抽样分布类型
假如要对一份统计数据进行分析,一般其来源来自于社会调研/普查,所以数据不是总体而是一定程度的抽样.对于抽样数据的分析,就可以结合上篇统计量及其抽样分布的内容,判断数据符合哪种分布.使用已知分布特性,可以完成对总体的统计分析. 本文使用python函数判断数据集是否符合特定抽样分布. 数据来源 本次试验使用kagglehttps://www.kaggle.com/datasets上的公开数据集,可以通过搜索框进行数据集搜索. 通过搜索「income」关键值,最后决定使用https://www.ka
python和数据科学(Anaconda)
Python拥有着极其丰富且稳定的数据科学工具环境.遗憾的是,对不了解的人来说这个环境犹如丛林一般(cue snake joke).在这篇文章中,我会一步一步指导你怎么进入这个PyData丛林. 你可能会问,很多现有的PyData包推荐列表怎么样?我觉得对新手来说提供太多的选择可能会受不了.因此这里不会提供推荐列表,我要讨论的范围很窄,只集中于10%的工具,但它们可以完成你90%的工作.当你掌握这些必要的工具后,你就可以浏览PyData工具的长列表了,选择自己接下来要使用的. 值得一提的是,我介
用 Python 排序数据的多种方法
用 Python 排序数据的多种方法 目录 [Python HOWTOs系列]排序 Python 列表有内置就地排序的方法 list.sort(),此外还有一个内置的 sorted() 函数将一个可迭代对象(iterable)排序为一个新的有序列表. 本文我们将去探索用 Python 做数据排序的多种方法. 排序基础 简单的升序排序非常容易:只需调用 sorted() 函数,就得到一个有序的新列表: 你也可以使用 list.sort() 方法,此方法为就地排序(并且返回 None 来避免混淆).
hdfs 数据块重分布 sbin/start-balancer.sh -threshold
数据块重分布sbin/start-balancer.sh -threshold <percentage of disk capacity>percentage of disk capacityHDFS达到平衡状态的磁盘使用率偏差值值越低各节点越平衡,但消耗时间也更长
python爬虫+数据可视化项目(关注、持续更新)
python爬虫+数据可视化项目(一) 爬取目标:中国天气网(起始url:http://www.weather.com.cn/textFC/hb.shtml#) 爬取内容:全国实时温度最低的十个城市气温排行榜 使用工具:requests库实现发送请求.获取响应. beautifulsoup实现数据解析.提取和清洗 pyechart模块实现数据可视化 爬取结果:柱状图可视化展示: 直接放代码(详细说明在注释里,欢迎同行相互交流.学习~): import requests from bs4 impo
随想:目标识别中,自适应样本均衡设计,自适应模型结构(参数可变自适应,模型结构自适应,数据类别or分布自适应)
在现在的机器学习中,很多人都在研究自适应的参数,不需要人工调参,但是仅仅是自动调参就不能根本上解决 ai识别准确度达不到实际生产的要求和落地困难的问题吗?结论可想而知.如果不改变参数,那就得从算法的结构入手, 比如,现有的谷歌的MnasNet系列,这种是在人工的指导下进行的,但是,仅仅是这样就够了吗?我个人觉得还不够 1.在做机器学习的时候,我们模型的指标提不上去的时候,通常原因是因为边缘样本,也就是我们所说的hard-example, 如果和解决边缘样本呢?目前是人工发现这些样本并增加hard
python调用数据返回字典dict数据的现象2
python调用数据返回字典dict数据的现象2 思考: 话题1连接:https://www.cnblogs.com/zwgbk/p/10248479.html在打印和添加时候加上内存地址id(),可以查看结果.可以得出结论:1.在make()函数里,生成数据的两种不同赋值方式. 1.1第一种情况,是在一个内存地址生成了一个空的字典.随后每次调用数据时候改变这个内存地址的里的数据. 1.2第二种情况,是在每次调用数据的时候,都生成不同内存地址的字典.2.添加进list后,并不是把数据直接保存在l
python调用数据返回字典dict数据的现象1
python调用数据返回字典dict数据的现象1 思考: 可以看到这两种情况,区别在于构造函数make()里赋值给字典dict的方式不同.使用相同的调用方式,而结果却完全不同.可以看到第二种情况才是我们想要的结果.目前不知道第一种情况为何会出现这样的结果,是何种原因造成的?话题2:https://www.cnblogs.com/zwgbk/p/10251909.html 说明: 第一种情况 键入代码: def make(): dict= { 'a': None } for a in range(
python 小数据池,is and "==",decode ,encode
一:小数据池 1.python运行中的缓存: 2.目的:缓存我们字符串,整数,布尔值.在使用的时候不需要创建过多的对象 3.python 缓存数据:缓存:int, str, bool. int: 缓存范围 -5~256 str: 1. 长度小于等于1,直接缓存 2. 长度大于1. 字符串中如果只有数字, 字母, 下划线. 就会缓存 3. 乘以1. 同上, 乘以大于
【转】Python用数据说明程序员需要掌握的技能
[转]Python用数据说明程序员需要掌握的技能 https://blog.csdn.net/HuangZhang_123/article/details/80497951 当下是一个大数据的时代,各个行业都离不开数据的支持.因此,网络爬虫就应运而生.网络爬虫当下最为火热的是Python,Python开发爬虫相对简单,而且功能库相当完善,力压众多开发语言. 本次教程我们爬取前程无忧的招聘信息来分析Python程序员需要掌握那些编程技术.首先在谷歌浏览器打开前程无忧的首页,按F12打开浏览器的开发
MySQL实验准备(二)--Python模拟数据(MySQL数据库)
Python模拟数据(MySQL数据库) 数据模拟 目的:模拟多个表的插入和查询数据的模拟,再通过基准测试脚本测试服务器性能和收集数据,仿真模拟. 备注: 如果需要基础的python环境,可以查看<MySQL实验准备(一)--环境准备>文档 实验脚本 通过对一个简单表的脚本插入和查询模拟,后面能 举一反三,完成多张表的多表插入,多线程的多表插入,多线程查询,和多线程的join查询. 数据库的表结构 mysql> show create table zdemo.student; +----
【转】Python之数据序列化(json、pickle、shelve)
[转]Python之数据序列化(json.pickle.shelve) 本节内容 前言 json模块 pickle模块 shelve模块 总结 一.前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Python也是一样.很多时候我们会有这样的需求: 把内存中的各种数据类型的数据通过网络传送给其它机器或客户端: 把内存中的各种数据类型的数据保存到本地磁盘持久化: 2.数据格式 如果要将一个系统内的数据通过网络传输给其它系统或客户
Python处理数据
由于找实习,要学习python处理数据,python连接mysql,python读写文件,python读写xlsx文件,这些只要引入了相关的包,就非常容易,处理过程非常清晰.模块如果封装的好,没怎么学过编程的人也很容易上手. 就把python当做自行车用,用脚本处理一些重复性的工作非常便捷,但程序就是写不长,但是这些脚本已经能够完成我们的工作了.另外,pycharm真的很好用,不仅体现在代码自动提示,还在安装外部库时非常方便.
热门专题
qpython 3h图形库实际例
vue echart 动态line
arcgis打开cad文字乱码
怎么看UNDO有没有满
Python程序设计黄蔚熊福松电子书百度网盘
canvas 元素拖拽
main文件夹看不到java
commons hash算法
iOS使用 ldap
numpy enumerate二维数组
springboot2.x application 定义常量
sqlserver默认实例是什么
搬瓦工vps能访问谷歌学术吗
node执行.bat
.net vnext 子模块页面取值
vm使用无效的拖拽类型
myeclipse怎么导入ADT
css label 对齐
qt case 分支
GIS地图文档坏了 打不开