filter(function, iterable): Construct a list from those elements of iterable for which function returns true. 对iterable中的item依次执行function(item),将执行结果为True的item组成一个List/String/Tuple(取决于iterable的类型)返回. iterable包括列表,iterator等.一个简单例子,过滤出一个整数列表中所有的奇数 >>&
filter built-in function filter(f,sequence) filter can apply the function f to each element of sequence. If return is true the element will be returned and re-organized to be a new sequence. The type of new sequence can be list/tuple/string, this dep
python基础——map/reduce Python内建了map()和reduce()函数. 如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大概明白map/reduce的概念. 我们先看map.map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回. 举例说明,比如我们有一个函数f(x)=
# lambda,filter,map,reduce from functools import reduce print('返回一个迭代器') print((x) for x in range(5)) print('迭代器转换为tuple') print(tuple((x) for x in range(5))) print('.......') print('匿名函数lambda传参方式一') print((lambda x, y: x+y)(1, 2)) print((lambda x:
Here I share with you a demo for python map, reduce and filter functional programming thatowned by me(Xiaoqiang). I assume there are two DB tables, that `file_logs` and `expanded_attrs` which records more columns to expand table `file_logs`. For demo
Python内建了map()和reduce()函数. 如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大概明白map/reduce的概念. 我们先看map.map()函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回. 举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4,