PyTorch 实战:计算 Wasserstein 距离 2019-09-23 18:42:56 This blog is copied from: https://mp.weixin.qq.com/s/nTUKYNxdiPK3xdOoSXvTJQ 最优传输理论及 Wasserstein 距离是很多读者都希望了解的基础,本文主要通过简单案例展示了它们的基本思想,并通过 PyTorch 介绍如何实战 W 距离. 机器学习中的许多问题都涉及到令两个分布尽可能接近的思想,例如在 GAN 中令生成器分布
流形学习 (manifold learning) zz from prfans............................... dodo:流形学习 (manifold learning) dodo 流形学习是个很广泛的概念.这里我主要谈的是自从2000年以后形成的流形学习概念和其主要代表方法.自从2000年以后,流形学习被认为属于非线性降维的一个分支.众所周知,引导这一领域迅速发展的是2000年Science杂志上的两篇文章: Isomap and LLE (Locally Lin
容错声明: ①题目选自https://acm.ecnu.edu.cn/,不再检查题目删改情况 ②所有代码仅代表个人AC提交,不保证解法无误 E0001 A+B Problem First AC: 2017-10-13 Latest Modification: 2018-02-28 #include<bits/stdc++.h> using namespace std; int a,b; int main() { cin>>a>>b; cout<<