首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言分层抽样求积分
2024-10-31
R语言实现分层抽样(Stratified Sampling)以iris数据集为例
R语言实现分层抽样(Stratified Sampling)以iris数据集为例 1.观察数据集 head(iris) Sampling)以iris数据集为例"> 选取数据集中前6个数据,我们可以看出iris数据集一共有5个字段. dim(iris) Sampling)以iris数据集为例"> iris数据集一共有150条数据,5个字段 summary(iris) Sampling)以iris数据集为例"> 观察各个变量的内容,可以看出前四个变量(Se
R 语言实现求导
前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了. 不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中.因为R语言我重新学习了高数,让生活中充满数学,生活会变得更有意思. 本节并不是完整的高数计算手册,仅介
R语言做相关性分析
衡量随机变量相关性的方法主要有三种:pearson相关系数,spearman相关系数,kendall相关系数: 1. pearson相关系数,亦即皮尔逊相关系数 pearson相关系数用来衡量两个随机变量之间的相关性 R语言中求两个随机变量pearson相关系数的函数: 1//赋予a,b向量值 2a<-c(1,2,3) 3b<-c(11,12,14) 4 5//计算pearson相关系数 6cor.test(a,b,method="pearson") 结果 Pe
R和python语言如何求平均值,中位数和众数
均值是通过取数值的总和并除以数据序列中的值的数量来计算. R语言平均值公式: mean(x, trim = 0, na.rm = FALSE, ...)#x - 是输入向量.trim - 用于从排序的向量的两端删除一些观测值.na.rm - 用于从输入向量中删除缺少的值 > x<-c(-22,-13,2,45,56,73,21,44,NA)> result.mean<-mean(x,rim=0.2,na.rm=TRUE)#rim=0.2就是对x其中的向量排序,然后去掉左边和右边的各
R语言两种方式求指定日期所在月的天数
R语言两种方式求指定日期所在月的天数 days_monthday<-function(date){ m<-format(date,format="%m") days31<-c("01","03","05","07","08","10","12") days30<-c("04",&
用R语言求置信区间
用R语言求置信区间 用R语言求置信区间是很方便的,而且很灵活,至少我觉得比spss好多了. 如果你要求的只是95%的置信度的话,那么用一个很简单的命令就可以实现了 首先,输入da=c(你的数据,用英文逗号分割),然后t.test(da),运行就能得到结果了. 我的数据是newbomb <- c(28,26,33,24,34,-44,27,16,40,-2,29,22,24,21,25,30,23,29,31,19) t.test(newbomb)得到的结果如下 如果要求任意置信度下的置信区间
R语言——七月
这两个月没有写什么代码.也没做什么大项目,基本就是对以前写的那个用ggplot2可视化数据的项目做一些增增补补,大部分技术难关都在ggplot2和R语言EXCEL处理这里解决并总结了.然后业余帮人修改一个用RVEST写的亚马逊简陋爬虫,花了两个周末时间. 就简单记一下最近弄的这个功能块 功能块分区,并自定义 这个是在处理数据的时候,需要对一批有序数字按照累积的概率进行分组,然后划分分组. 主要用到了两个函数:cumsum(求累积分布),cut(划分区间) 如下面的示例函数getInterval,
几种经典排序算法的R语言描述
1.数据准备 # 测试数组 vector = c(,,,,,,,,,,,,,,) vector ## [] 2.R语言内置排序函数 在R中和排序相关的函数主要有三个:sort(),rank(),order(). sort(x)是对向量x进行排序,返回值排序后的数值向量; rank()是求秩的函数,它的返回值是这个向量中对应元素的“排名”; order()的返回值是对应“排名”的元素所在向量中的位置. sort(vector) ## [] order(vector) ## [] rank(vect
R语言解读一元线性回归模型
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是
R语言实战(二)数据管理
本文对应<R语言实战>第4章:基本数据管理:第5章:高级数据管理 创建新变量 #建议采用transform()函数 mydata <- transform(mydata, sumx = x1 + x2, meanx = (x1 + x2)/2) 重编码 < 小于 <= 小于或等于 > 大于 >= 大于或等于 == 严格等于(比较浮点类型时慎用,易误判) != 不等于 !x 非x x | y x或y x & y x和y isTRUE(x) x是否为TRUE
R 语言机器学习同步推进~
教材就是传说中的机器学习和R语言--中文版,大家可以去图书馆借来看看~~~,例子都是来自书上的 首先介绍一下KNN算法,KNN还好吧,说白了就是一个算距离的公式然后以统计的方式呈现出来,以二维平面为例,平面内已知n个区域,每个区域里面有m(n)个点,现在求一个不在n区域内的点与哪一个区域最近,额,为了"恰当",考虑较远的点的影响会覆盖较近点的影响和没有意义的重复计算,只取k(k<n)个较近点参与计算,这就是这个方法的原理了,简单粗暴~~问题还有就是在数据很大的时候怎么选取K值,书
R语言基础:数组&列表&向量&矩阵&因子&数据框
R语言基础:数组和列表 数组(array) 一维数据是向量,二维数据是矩阵,数组是向量和矩阵的直接推广,是由三维或三维以上的数据构成的. 数组函数是array(),语法是:array(dadta, dim),其中data必须是同一类型的数据,dim是各维的长度组成的向量. 1.产生一个三维和四维数组. 例1:xx <- array(1:24, c(3, 4, 2)) #一个三维数组 例2:yy <- array(1:36, c(2, 3, 3, 2)) #一个四维数组 2.dim()函数可
[转]概率基础和R语言
概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器.随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长.现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言. 要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域.让我们一起
机器学习(一) 从一个R语言案例学线性回归
写在前面的话 按照正常的顺序,本文应该先讲一些线性回归的基本概念,比如什么叫线性回归,线性回规的常用解法等.但既然本文名为<从一个R语言案例学会线性回归>,那就更重视如何使用R语言去解决线性回归问题,因此本文会先讲案例. 线性回归简介 如下图所示,如果把自变量(也叫independent variable)和因变量(也叫dependent variable)画在二维坐标上,则每条记录对应一个点.线性回规最常见的应用场景则是用一条直线去拟和已知的点,并对给定的x值预测其y值.而我们要做的就是找出
关联规则-R语言实现
关联规则code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);} .main-contai
R语言学习笔记:分析学生的考试成绩
孩子上初中时拿到过全年级一次考试所有科目的考试成绩表,正好可以用于R语言的统计分析学习.为了不泄漏孩子的姓名,就用学号代替了,感兴趣可以下载测试数据进行练习. num class chn math eng phy chem politics bio history geo pe0158 3 99 120 114 70 49.5 50 49 48.5 49.5 600442 7 107 120 118.5 68.6 43 49 48.5 48.5 49 560249 4 98 120 116 70
R语言学习笔记:字符串处理
想在R语言中生成一个图形文件的文件名,前缀是fitbit,后面跟上月份,再加上".jpg",先不百度,试了试其它语言的类似语法,没一个可行的: C#中:"fitbit" + month + ".jpg" VB:"fitbit" & month & ".jpg" Haskell:"fitbit" ++ month ++ ".jpg" 还想到concat之
R语言学习笔记:向量
向量是R语言最基本的数据类型. 单个数值(标量)其实没有单独的数据类型,它只不过是只有一个元素的向量. x <- c(1, 2, 4, 9) x <- c(x[1:3], 88, x[4]) #在最后一个数前面插入一个数值88,可以看到用x[4]可以取出第4个元素,用x[1:3]可以取出前3个元素 typeof(x) #查看向量里的元素的类型,注意默认是double.[1] "double" mode(x) #r语言中变量类型称为模式(mode).[1] &
R语言学习笔记:小试R环境
买了三本R语言的书,同时使用来学习R语言,粗略翻下来感觉第一本最好: <R语言编程艺术>The Art of R Programming <R语言初学者使用>A Beginner’s Guide to R <R语言实战>R in Action 一句话简介R语言:R是一种用于数据处理和统计分析的脚本语言,它受到由AT&T实验室开发的统计语言S(Statistics)的启发,且基本上兼容于S语言. 下载并安装R 从google中搜索R,第一个搜索结果就是R语言的网站
主成分分析(PCA)原理及R语言实现
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个
热门专题
nodejs require和import哪个好
rails render 传递参数
栈的remove()
centos7 scp用法写入文件
kmalloc最大申请内存
Java单元测试工具——junit
将字符串连接起来并输出
beanshell 编辑器
SQL 数据库显示可疑
navicat 12 注册码
chrome 控制台 如何添加snippet
iframe 去掉边框
windows10官方原版镜像
如何等到所有的图片都加载完成之后触发一次onload事件
sql server单用户模式被占用
外国有什么bt下载手机APP
spss如何对变量分组
jq鼠标拖动滚动条时监听不到
linux系统图形化界面重启
oracle数据库stuff函数