首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言如何做逐步回归logistics
2024-11-05
R语言 逐步回归分析
逐步回归分析是以AIC信息统计量为准则,通过选择最小的AIC信息统计量,来达到删除或增加变量的目的. R语言中用于逐步回归分析的函数 step() drop1() add1() #1.载入数据 首先对数据进行多元线性回归分析 tdata<-data.frame( x1=c( , ,,, ,, , , ,, ,,), x2=c(,,,,,,,,,,,,), x3=c( ,, , , , ,,,, ,, , ), x4=c(,,,,,, ,,,,,,), Y =c(78.5,74.3,
[R]R语言里的异常处理与错误控制
之前一直只是在写小程序脚本工具,几乎不会对异常和错误进行控制和处理. 随着脚本结构和逻辑更复杂,脚本输出结果的准确性验证困难,同时已发布脚本的维护也变得困难.所以也开始考虑引入异常处理和测试工具的事情. 不过好像R语言的异常处理似乎有些辣鸡?查了下资料和try的文档说明,感觉说的并不清楚. 在网上查了一些资料,对R语言异常处理做了比较详细的说明,留档作为参考.至于测试工具的问题,后续还是再考虑下. 文章链接:R语言-处理异常值或报错的三个示例 原文参考了以下几个网页: http://stacko
R语言简单入门
一.运行R语言可以做哪些事? 1.探索性数据分析(将数据绘制图表) 2.统计推断(根据数据进行预测) 3.回归分析(对数据进行拟合分析) 4.机器学习(对数据集进行训练和预测) 5.数据产品开发 二.R语言包的使用 1.安装包 install.packages()//安装https://cran.r-project.org/ install_github()//从github安装 2.使用包 加载包library(caret)//括号为包的名字 data()//R自带的数据集(针对导入的包) ?
手把手教你学习R语言
本文为带大家了解R语言以及分段式的步骤教程! 人们学习R语言时普遍存在缺乏系统学习方法的问题.学习者不知道从哪开始,如何进行,选择什么学习资源.虽然网络上有许多不错的免费学习资源,然而它们多过了头,反而会让人挑花了眼. 为了构建R语言学习方法,我们在Vidhya和DataCamp中选一组综合资源,帮您从头学习R语言.这套学习方法对于数据科学或R语言的初学者会很有用;如果读者是R语言的老用户,则会由本文了解这门语言的部分最新成果. R语言学习方法会帮助您快速.高效学习R语言. 前言 在开始学习之前
使用R语言分析股价波动
今天看的R语言.做个笔记. 使用R语言读取雅虎財经数据.分析微软公司(股票代码:MSFT)在2015年股价波动超过百分之十的日期. 然后通过检索新闻的方式,看看微软当天有什么新闻发生,导致股价波动. 首先,读入股价信息: getSymbols("MSFT",src="yahoo",from="2015-1-1",to="2015-12-31") 然后使用Cl读取收盘价格,使用Delt函数分析与前一日的差异. 最后,使用plot
用R语言 做回归分析
使用R做回归分析整体上是比较常规的一类数据分析内容,下面我们具体的了解用R语言做回归分析的过程. 首先,我们先构造一个分析的数据集 x<-data.frame(y=c(102,115,124,135,148,156,162,176,183,195), var1=runif(10,min=1,max=50), var2=runif(10,min=100,max=200), var3=c(235,321,412,511,654,745,821,932,1020,1123)) 接下来,我们进行简单的一
对数据集做标准化处理的几种方法——基于R语言
数据集——iris(R语言自带鸢尾花包) 一.scale函数 scale函数默认的是对制定数据做均值为0,标准差为1的标准化.它的两个参数center和scale: 1)center和scale默认为真,即T 2)center为真表示数据中心化 3)scale为真表示数据标准化 中心化:所谓数据的中心化是指数据集中的各项数据减去数据集的均值. 标准化:标准化就是数据在中心化之后再除以标准差.变换后值域为[0,1]. # 标准化与中心化data(iris) # 读入数据head(iris) #查看
给社团同学做的R语言爬虫分享
大家好,给大家做一个关于R语言爬虫的分享,很荣幸也有些惭愧,因为我是一个编程菜鸟,社团里有很多优秀的同学经验比我要丰富的多,这次分享是很初级的,适用于没有接触过爬虫且有一些编程基础的同学,内容主要有以下几个方面:背景知识,爬取方法,数据处理和存储以及我学习编程以来的经验和教训. 背景知识一:爬虫是什么 很简单,就是写一套程序,把自己伪装成一个浏览器不断地访问目标网站,批量下载下来上面的信息. 这张图是来自人民大学新闻系的官方公众号-RUC新闻坊,他们就是通过爬虫获取了信息,这些信息经过加工分析后
R语言做相关性分析
衡量随机变量相关性的方法主要有三种:pearson相关系数,spearman相关系数,kendall相关系数: 1. pearson相关系数,亦即皮尔逊相关系数 pearson相关系数用来衡量两个随机变量之间的相关性 R语言中求两个随机变量pearson相关系数的函数: 1//赋予a,b向量值 2a<-c(1,2,3) 3b<-c(11,12,14) 4 5//计算pearson相关系数 6cor.test(a,b,method="pearson") 结果 Pe
[译]用R语言做挖掘数据《七》
时间序列与数据挖掘 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程Vim编辑器3. R:在命令行输入‘R’进入交互式环境,下面的代码都是在交互式环境运行4. 数据:在命令行终端输入以下命令:
[译]用R语言做挖掘数据《六》
异常值检测 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程[Vim编辑器](http://www.shiyanlou.com/courses/2)3. R:在命令行输入‘R’进入交互式环
[译]用R语言做挖掘数据《五》
介绍 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程[Vim编辑器](http://www.shiyanlou.com/courses/2)3. R:在命令行输入‘R’进入交互式环境,下
[译]用R语言做挖掘数据《四》
回归 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程Vim编辑器3. R:在命令行输入‘R’进入交互式环境,下面的代码都是在交互式环境运行. 3. 环境使用 使用R语言交互式环境输入实验
[译]用R语言做挖掘数据《三》
决策树和随机森林 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程Vim编辑器.3. R:在命令行终端输入‘R’,进入R的交互式环境,下面的代码都是在交互式环境运行. 3. 环境使用 使用
[译]用R语言做挖掘数据《二》
数据探索 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程[Vim编辑器](http://www.shiyanlou.com/courses/2)3. R:在命令行输入‘R’ 进入R语言
[译]用R语言做挖掘数据《一》
介绍 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程Vim编辑器3. R:在命令行输入‘R’即可进入交互式环境,下面的代码都是在交互式环境运行. 3. 环境使用 使用R语言交互式环境输入
闲来无事,在微信推文中看到一个炫酷的具有动态特效的中国地图,是用R语言做的,于是尝试了一下
目录 最终的效果图如下: 1.环境准备 2.需要安装的包: 3.进一步配置: end 最终的效果图如下: 1.环境准备 既然是用R语言作图,那么这几个软件是一定需要安装的: R语言的编译器:https://mirrors.tuna.tsinghua.edu.cn/CRAN/index.html (这里就提前给大家避坑一下:R尽量不要安装最新的4.0.4,安装完4.0.4后期你会发现总会出现一些莫名其妙的问题,比如安装各种包的时候出现混乱,又或者是命令窗口的结果都变成了Unicode编码..等等,
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业
survival analysis 生存分析与R 语言示例 入门篇
原创博客,未经允许,不得转载. 生存分析,survival analysis,顾名思义是用来研究个体的存活概率与时间的关系.例如研究病人感染了病毒后,多长时间会死亡:工作的机器多长时间会发生崩溃等. 这里“个体的存活”可以推广抽象成某些关注的事件. 所以SA就成了研究某一事件与它的发生时间的联系的方法.这个方法广泛的用在医学.生物学等学科上,近年来也越来越多人用在互联网数据挖掘中,例如用survival analysis去预测信息在社交网络的传播程度,或者去预测用户流失的概率. R里面有很成熟
零基础数据分析与挖掘R语言实战课程(R语言)
随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况可见一斑.于是善于学习的程序员们开始了R语言的学习 之旅.对于有其他语言背景的程序员来说,学习R的语法小菜一碟,因为它的语法的确太简单了,甚至有的同学说1周就能掌握R语言,的确如 此.但是之后呢?……好像进行不下去了!死记硬背记住了两个分析模型却不明其意,输出结果如同天书不会解读,各种参数全部使用缺
热门专题
vue实现的路由跳转原理
c#anycad的场景管理
获取selectpicker选择
geo3d symbol自定义图标只有一种颜色
mysql 分区最大
openssl pfx 生成 cer
WPS的PDF目录咋弄
python输出一列元素
linux 决定deb文件安装位置
mysql binlog删除后主从同步
power bi 累加度量值 跨年
goland 调用微信getwxacodeunlimit
windows11 fn f1 互换
visualstudio插件更新慢
FRP 访问WEB服务用到的端口
ip engine是什么设备
https 接口 不能访问
hytrix使用集群限流
visual studio 调试 内存图
对于学习python课程的总结