首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言绘制印度地图数据
2024-11-09
【R】用 ggplot2 绘制漂亮的分级统计地图
最近我一直尝试利用R绘制地图,我从网上找到了上百种不同的实现方法,然而其中却没有适用于我的数据的方法.最终,我从以下几个博客[1]中找到了灵感.我在整合这些资源的基础上,通过不断的试验和修正得到了一个较好地解决方案.这个方案就是本篇博文的主要内容. 本篇博文中展示了如何利用 ggplot2 来绘制分级统计地图,同时还介绍了如何更改图例.颜色等参数指标,以及如何导出图像文件. 数据预处理 绘制分级统计地图需要一些软件包,你最好确认你的电脑中已经安装并加载了它们.我们利用 maptools 库中的
R语言和中国地图
上图是R语言绘制的按地域分布的数据图.更科学,更严谨,也更有质感的样子. 今天瞎写点东西,我在想数据分析的意义是什么,也许就是研究事物存在的形式.而事物存在的形式是什么样子呢,从最初的三维空间,爱因斯坦伯伯把时间也拉了进来,于是时间作为一种变化的空间而存在着,成为第四维.现在好像还发现了第五空间,可能是人的心理空间或者意识空间,还有人说是曲率,不一而足.个人认为i,所有的事物应该都是彼此联系的,没有单纯的独立的与其他东西绝缘的存在.而人的内心,人的思维目前确实是独立于其他四维的空间.所以他应该是
R语言绘制相对性关系图
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,
R语言中的横向数据合并merge及纵向数据合并rbind的使用
R语言中的横向数据合并merge及纵向数据合并rbind的使用 我们经常会遇到两个数据框拥有相同的时间或观测值,但这些列却不尽相同.处理的办法就是使用merge(x, y ,by.x = ,by.y = ,all = ) 函数. #合并ID<-c(1,2,3,4)name<-c("A","B","C","D")score<-c(60,70,80,90)student1<-data.frame(ID,na
R语言系列:生成数据
R语言系列:生成数据 (2014-05-04 17:41:57) 转载▼ 标签: r语言 教育 分类: 生物信息 生成规则数据1.使用“:“,如x=1:10,注意该方法既可以递增也可以递减,如y=10:12.seq,有两种用法:①seq(起点,终点,步长); ②seq(length=9, from=1, to=5) seq还有一种简写:seq(x) #相当于1:length(x),但当length(x)为0时,返回integer(0)3.c(1,2,8)4.使用scan(),可以等待
一幅图解决R语言绘制图例的各种问题
一幅图解决R语言绘制图例的各种问题 用R语言画图的小伙伴们有木有这样的感受,"命令写的很完整,运行没有报错,可图例藏哪去了?""图画的很美,怎么总是图例不协调?""啊~~啊,抓狂,图例盖住关键的点了.""怎么才能让图例指哪站哪?" "图例太长怎么办"-- 吐槽吐到累,不如多掌握几个图例(Legend)的软肋,更好地利用R语言绘图. legend(x, y = NULL, legend, fill = NUL
R语言绘制空间热力图
先上图 R语言的REmap包拥有非常强大的空间热力图以及空间迁移图功能,里面内置了国内外诸多城市坐标数据,使用起来方便快捷. 开始 首先安装相关包 install_packages("devtools") install_packages("REmap") library(devtools) library(REmap) 我们来试试其强大的城市坐标获取功能 city<- c("beijing","上海") get_geo
用R语言实现对不平衡数据的四种处理方法
https://www.weixin765.com/doc/gmlxlfqf.html 在对不平衡的分类数据集进行建模时,机器学**算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性那么,这种结果是为何发生的呢?到底是什么因素影响了这些算法的表现? 在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测因此,机器学**算法常常被要求应用在平衡数据集上那我们该如何处理不平衡数据集?本文会介绍一些相关方法,它们并不复杂只是技巧性比较强 本文会介绍处理非
R语言绘制花瓣图flower plot
R语言中有很多现成的R包,可以绘制venn图,但是最多支持5组,当组别数大于5时,venn图即使能够画出来,看上去也非常复杂,不够直观: 在实际的数据分析中,组别大于5的情况还是经常遇到的,这是就可以考虑用花瓣图来进行数据的可视化 比如下面这个例子: 来源于该链接 https://www.researchgate.net/figure/235681265_fig3_The-pan-genome-of-Sinorhizobium-The-flower-plots-and-Venn-diagram
R语言绘制沈阳地铁线路图
##使用leaflet绘制地铁线路图,要求 ##(1)图中绘制地铁线路 library(dplyr) library(leaflet) library(data.table) stations<-read.csv("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\R语言\\相关作业文档\\3\\第五次实训课数据\\systation.csv"); stations <- arrange(stations,line,line_id) lin
R语言︱噪声数据处理、数据分组——分箱法(离散化、等级化)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 分箱法在实际案例操作过程中较为常见,能够将一些数据离散化,等级化,比如年龄段,我们并不想知道确切的几岁,于是乎可以将其分组.分段. 基础函数中cut能够进行简单分组,并且可以用于等宽分箱法. cut函数:cut(x, n):将连续型变量x分割为有着n个水平的因子.(参考来自: R语言︱数据集分组.筛选) [plain] view plain c
R语言数据集合并、数据增减、不等长合并
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 数据选取与简单操作: which 返回一个向量中指定元素的索引 which.max 返回最大元素的索引 which.min 返回最小元素的索引 sample 随机在向量中抽取元素 subset 根据条件选取元素 sort 升序排列元素 rev 反转所有元素 order 获取排序后的索引 table 返回频数表 cut 将数据分割为几部分 spl
吴裕雄--天生自然 R语言开发学习:数据集和数据结构
数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和变量 (variable),数据库分析师则称其为记录(record)和字段(field),数据挖掘和机器学习学科的研 究者则把它们叫作示例(example)和属性(attribute). 我们在R中使用术语:观测和变量.可以清楚地看到此数据集的结构(本例中是一个矩形数组)以及其中包含的内容和数据类型
R语言读取matlab中数据
1. 在matlab中将数据保存到*.mat 文件夹 save("data.mat","data","label")#将data和label两个变量保存到data.mat文件夹中 2.在R语言中安装R.matlab包 install.packages('R.matlab') 3.读取*.mat 文件中的数据 library(R.matlab) ob<-readMat("data.mat")# 返回的是一个列表,通 $进行
R语言绘制QQ图
无论是直方图还是经验分布图,要从比较上鉴别样本是否处近似于某种类型的分布是困难的 QQ图可以帮我们鉴别样本的分布是否近似于某种类型的分布 R语言,代码如下: > qqnorm(w);qqline(w)> w <- c(75.0, 64.0, 47.4, 66.9, 62.2, 62.2, 58.7, 63.5,+ 66.6, 64.0, 57.0, 69.0, 56.9, 50.0, 72.0)> qqnorm(w);qqline(w)
R语言:导入导出数据
主要学习如何把几种常用的数据格式导入到R中进行处理,并简单介绍如何把R中的数据保存为R数据格式和csv文件. 1.保存和加载R的数据(与R.data的交互:save()函数和load()函数) a <- 1:10 save(a, file = "data/dumData.Rdata") # data文件为当前工作目录下的文件,必须存在 rm(a) load("data/dumData.Rdata") print(a) 2.导入和加载.csv文件(writ
DT包 -- R语言中自定义表格数据
DT 包提供了 JavaScript 库 DataTables 的一个R接口,它使得R对象(矩阵或数据框)可以在HTML页面上显示为表格. 该包的DataTables函数生成的表格提供了数据的筛选.分页.排序及其他功能,目前依法不再CRAN上. 安装方法 install.packages("DT", repos="https://cloud.r-project.org/") 查看文档 ??DT 使用方法 该包的一个主要函数是 datatable().这个函数通过创建
R语言学习笔记(数据预处理)
setwd("d:/r/r-data/")data=read.table("salary.txt",header=T)attach(data)mean(Salary) #工资的平均值length(Salary) #数据个数cumsum(Salary) #累加 salary1=cut(Salary,3) #将数据分为三组table(salary1) salary1=cut(Salary,3,labels=c("low","medium&q
R语言学习笔记:数据的可视化
本文参考数据挖掘与R第二章节 读入数据 方法1,下载Data mining with r的配套包 install.packages('DMwR') 方法2,下载txt数据,并且读入数据.方法见上文. Summary()#的到数据的摘要,概括.(包括最大,小值,中值,均值,4分为,NA的数量) summary(algae) season size speed mxPH mnO2 autumn:40 lar
R语言学习笔记(数据的读取与保存)
library(MASS)#载入package MASSdata(package="MASS") #查看MASS中的数据集data(SP500,package="MASS") #载入MASS中的SP500数据集data(SP500) #简化写法getwd() #返回当前工作目录setwd("d:/r/r-data") #将当前工作路径修改为 data=read.table("d:/r/r-data/salary.txt",he
R语言绘制正太分布图,并进行正太分布检验
正态分布 判断一样本所代表的背景总体与理论正态分布是否没有显著差异的检验. 方法一概率密度曲线比较法 看样本与正太分布概率密度曲线的拟合程度,R代码如下: #画样本概率密度图s-rnorm(100)#产生样本d-density(s)plot(d,col=green,ylim=c(0,0.5))#添加正太分布概率密度图s2-seq(from=-4,to=4,length.out=100)lines(s2,norm_expression(s2),col=red) 画图结果如下: 方法二 正太
热门专题
centos 5.8 网卡mac地址修改
winform post传值报400错误
ubuntu上 home存储不足
Augmentor库弹性扭曲处理后怎么保存
ubuntu 18.04 编辑代码
centos7 安装 网络 bond
兰顿蚂蚁问题java
time元素中什么属性的取值是pudate
addAttribute的作用
mac svn文件被锁定怎么解决
游戏场景大量物体检测碰撞四叉树
python混淆加密解码
hbase添加服务自启动
Android CheckBox全选多选
mysqldunp.exe 用法
如何清理s7plcsimadvanced
linux dd扩容文件
华硕电脑无法安装双系统
texlive安装验证
sql2012服务管理器已停止评估期已过