首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言计算矩阵相似性
2024-08-17
R语言矩阵相关性计算及其可视化?
目录 1. 矩阵相关性计算方法 base::cor/cor.test psych::corr.test Hmisc::rcorr 其他工具 2. 相关性矩阵转化为两两相关 3. 可视化 corrplot gplots::heatmap.2 pheatmap 1. 矩阵相关性计算方法 base::cor/cor.test R基础函数cor或cor.test都可计算相关性系数,但cor可直接计算矩阵的相关性,而cor.test不可. 两者计算非矩阵时,cor仅得到相关系数,而cor.test还能得到
R语言计算moran‘I
R语言计算moran‘I install.packages("maptools")#画地图的包 install.packages("spdep")#空间统计,moran'I install.packages("tripack") install.packages("RANN") library("maptools") library("spdep") library("trip
R语言计算相关矩阵然后将计算结果输出到CSV文件
R语言计算出一个N个属性的相关矩阵(),然后再将相关矩阵输出到CSV文件. 读入的数据文件格式如下图所示: R程序采用如下语句: data<-read.csv("I:\\SB\landuse1986\\copy-number-sb2074.landuse.1986.class.csv")//括号内为读入的csv数据文件的绝对地址,其中的斜杠采用向左的双斜杠 write.csv(cor(data,method="spearman"),file="I:\
R语言计算IV值
更多大数据分析.建模等内容请关注公众号<bigdatamodeling> 在对变量分箱后,需要计算变量的重要性,IV是评估变量区分度或重要性的统计量之一,R语言计算IV值的代码如下: CalcIV <- function(df_bin, key_var, y_var){ N_0<-table(df_bin[, y_var])[1] N_1<-table(df_bin[, y_var])[2] iv_c<-NULL var_c<-NULL for (col in c
使用R语言-计算均值,方差等
R语言对于数值计算很方便,最近用到了计算方差,标准差的功能,特记录. 数据准备 height <- c(6.00, 5.92, 5.58, 5.92) 1 计算均值 mean(height) [1] 5.855 2 计算中位数 median(height) [1] 5.92 3 计算标准差 sd(height) [1] 0.1871719 4 计算方差 var(height) [1] 0.03503333 5 计算两个变量之间的相关系数 cor(height,log(height)) [1] 0
使用R语言-为矩阵(表格)的行列命名
转自:http://www.dataguru.cn/article-2217-1.html R语言中经常进行矩阵(表格)数据的处理,在纷繁复杂的数据中,为其行列定义一个名字变得尤为重要.在处理巨量数据时,批量命名将是一个不错的操作方法,下面我们通过一些具体的例子演示怎样在R语言中为矩阵的行列进行批量的命名. > x <- matrix(1:12,nrow=3,byrow=T) 初始化一个矩阵,先行后列的顺序进行填充 > x 查看矩阵x [,1] [,2] [,3] [,4] [1,]
[R语言]R语言计算unix timestamp的坑
R+mongo的组合真是各种坑等着踩 由于mongo中的时间戳普遍使用的是unix timestamp的格式,因此需要对每天的数据进行计算的时候,很容易就想到对timestamp + gap对方式来实现每天的时间范围. 但这时候就埋下了一个坑,这个坑就是计算精度的问题. ms级的时间戳长度是12位,R中会识别成1.421112+e12的格式.gap的则是 1000 * 60 * 60 *24 * i,数量级是10^8.两者相加,在取某个i的时候,会出现加出来的数据与下一天的timestamp对不
Windows中使用OpenBLAS加速R语言计算速度
在使用R的时候会发现R对CPU的利用率并不是很高,反正当我在使用R的时候,无论R做何种运算R的CPU利用率都只有百分子几,这就导致一旦计算量大的时候计算时间非常长,会给人一种错觉(R真的在计算吗?会不会我的程序死掉了?).今天,我看到了一篇博客介绍的方法,迫不及待的尝试了一下,只能说:太牛逼了!下面是我的测试截图: 前:
c语言计算矩阵特征值和特征向量-1(幂法)
#include <stdio.h> #include <math.h> #include <stdlib.h> #define M 3 //方阵的行数 列数 #define ε0 0.00000001//ε0为要求的精度 #define N 100000//最大迭代次数 //函数预声明 ], int m, int n);//矩阵的打印 void printVector(double a[], int m);//向量的打印 double dotVector(double
R语言学习——矩阵
> #矩阵是一个二维数组,每个元素都拥有相同的模式(数值型.字符型或者逻辑型).通过matrix()创建,一般使用格式为:mymatrix<-matrix(vector,nrow=number_of_rows,ncol=number_of_columes,byrow+logical_value,dimnames=list(char_vector_rownames,char_vector_colnames))> #其中vector包含矩阵的元素,nrow和ncol用于指定行列的维数,dim
2-3 R语言基础 矩阵和数组
#矩阵Matrix 三个参数:内容(可省),行数,列数 > x <- matrix(1:6,nrow = 3,ncol = 2) #第一个是内容,第二个,第三个是行列> x[1,2][1] 4 > #维度属性> dim(x)[1] 3 2 > #查看矩阵的属性> attributes(x)$`dim`[1] 3 2 > #由向量来创建矩阵的方法> y <-1:6> dim(y) <- c(2,3)> dim(y)[1] 2 3
R语言对矩阵按某一列排序
[plain] view plaincopy a <- c(5,4,3,2,1) b <- c(1,2,3,4,5) c <- cbind(a,b) [plain] view plaincopy c[order(c[,1]),] #按第一列递增排序
R语言矩阵维度“消失”的问题
矩阵(matrix)是R语言中很基础的一种数据结构,也是R语言使用者经常使用的一种数据结构.矩阵的维度一般为二维(m*n). R语言中矩阵的操作是非常简单易懂的,但是在对R语言做矩阵操作时,有个地方需要特别注意.下面我们通过一个例子说明. 首先,我们创建一个用于测试的矩阵. test1 <- matrix(data = c(1:6), nrow = 3, ncol = 2, dimnames = list(c("row1", "row2", "row
R语言分析(一)-----基本语法
一, R语言所处理的工作层: 解释一下: 最下面的一层为数据源,往上是数据仓库层,往上是数据探索层,包括统计分析,统计查询,还有就是报告 再往上的三层,分别是数据挖掘,数据展现和数据决策. 由上图可知,R语言是可以用于数据挖掘,数据展现,而后领导根据展现的数据来决策,R语言在数据展现的方面,拥有很强大的功能. 二,R语言的数据结构: 包括如下的几项:包括向量,矩阵,数组,数据框,列表和因子 1,向量: 创建向量的方法一共有三种,分别如下: 第一种,使用c()的这个方法: 由于博客中木有R语言
R语言环境变量的设置 环境设置函数为options()
环境设置函数为options(),用options()命令可以设置一些环境变量,使用help(options)可以查看详细的参数信息. 1. 数字位数的设置,options(digits=n),n一般默认情况下是7位,但实际上的范围是1~22,可以随意设置位数. #这个命令,可以把R的整数表示能力设为10位. options(digits=10) 2. 扩展包的安装,使用下面的命令,可以联网安装扩展包. options(CRAN="http://cran.r-project.org")
R语言演示功能
大家熟知的画图ggplot2包 library(ggplot2) #查看系统自带的qplot的函数演示 example(qplot) #R语言的基本对象 向量.矩阵.数组.数据框.列表 R语言的变量都是对象(包括函数),都有mode和lenght方法可以调用 #善用向量化的ifelse()函数 #R语言的下标从1开始,与C等语言不同 #R语言的矩阵元素默认按列存储 #善用apply, sapply, lapply(list apply)等函数,其中sapply(代表simplified appl
R语言学习笔记1——R语言中的基本对象
R语言,一种自由软件编程语言与操作环境,主要用于统计分析.绘图.数据挖掘.R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发(也因此称为R),现在由“R开发核心团队”负责开发.R是基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行.R的语法是来自Scheme. R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux).
谈谈R语言的缺点和优点
编码不友好,对中文不友好,逼着你用RStudio.Jupyter Notebook/Jupyter Lab.图标丑,每次点击感觉辣眼睛. 为节省内存,R语言计算默认有效数字为7位,比Excel的15位还坑,幸好可以用options(digit=20)调整.为节省内存,很多函数默认会把strings转为factor,部门.性别等转化尚能接受,姓名等转化不能接受. 严格区分等于.赋值.参数设置. 向量化,代码简洁,写起来爽.为统计而生,函数化,写起来快. 序号从1开始,方便排版报表.write.cs
R语言实现︱局部敏感哈希算法(LSH)解决文本机械相似性的问题(二,textreuse介绍)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 上一篇(R语言实现︱局部敏感哈希算法(LSH)解决文本机械相似性的问题(一,基本原理))讲解了LSH的基本原理,笔者在想这么牛气冲天的方法在R语言中能不能实现得了呢? 于是在网上搜索了一下,真的发现了一个叫textreuse的包可以实现这样的功能,而且该包较为完整,可以很好地满足要求. 现在的版本是 0.1.3,最近的更新的时间为 2016-0
R语言基础:数组&列表&向量&矩阵&因子&数据框
R语言基础:数组和列表 数组(array) 一维数据是向量,二维数据是矩阵,数组是向量和矩阵的直接推广,是由三维或三维以上的数据构成的. 数组函数是array(),语法是:array(dadta, dim),其中data必须是同一类型的数据,dim是各维的长度组成的向量. 1.产生一个三维和四维数组. 例1:xx <- array(1:24, c(3, 4, 2)) #一个三维数组 例2:yy <- array(1:36, c(2, 3, 3, 2)) #一个四维数组 2.dim()函数可
热门专题
win10应用商店下载的软件aapx
java列表翻页功能不显示一页
CSS3动画实现风车转
composer php excel 导入
tomcat 前端请求转发
docker删除MySQL命令
java正则表达式 性能
kitti road数据集下载
spring boot jpa 日期只查询年月日
linux怎么找到正在运行程序的文件在哪
机器学习分类结果验证
cocos2dx自己加密图片
win10应用程序启动记录
layer.render找不到方法
vue如何给对象添加属性
openwrt 5G 设置
python 查看本机ip
linux 获取md5
pandas 分组取最大值只显示值
sql 可以join两个同样的表格吗