首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言逻辑回归方程表达式
2024-08-28
logistic逻辑回归公式推导及R语言实现
Logistic逻辑回归 Logistic逻辑回归模型 线性回归模型简单,对于一些线性可分的场景还是简单易用的.Logistic逻辑回归也可以看成线性回归的变种,虽然名字带回归二字但实际上他主要用来二分类,区别于线性回归直接拟合目标值,Logistic逻辑回归拟合的是正类和负类的对数几率. 假设有一个二分类问题,输出为y∈{0,1} 定义sigmoid函数: 用sigmoid函数的输出是0,1之间,用来拟合y=1的概率,其函数R语言画图如下: x = seq(-5, 5, 0.1) y = 1
R语言-逻辑回归建模
案例1:使用逻辑回归模型,预测客户的信用评级 数据集中采用defect为因变量,其余变量为自变量 1.加载包和数据集 library(pROC) library(DMwR)model.df <- read.csv('E:\\Udacity\\Data Analysis High\\R\\R_Study\\高级课程代码\\数据集\\第一天\\4信用评级\\customer defection data.csv',sep=',',header=T 2.查看数据集, dim(model.df) hea
R语言执行脚本的几种命令
R CMD BATCH 和 Rscript 使用前都要先添加环境变量 把 C:\Program Files\R\R-3.3.0\bin; 加到"系统变量"的Path 值的最开始 可以用 R CMD BATCH *.r 也可以用 Rscript *.r args0 args1 这个可以跟一定的参数 当然也可以进入R交互环境 > source("*.r") 第一种命令适用于Windows和Mac 第二种命令适用于Linux 第三种命令都适用,不过不能跟命令行参数
【数据分析】线性回归与逻辑回归(R语言实现)
文章来源:公众号-智能化IT系统. 回归模型有多种,一般在数据分析中用的比较常用的有线性回归和逻辑回归.其描述的是一组因变量和自变量之间的关系,通过特定的方程来模拟.这么做的目的也是为了预测,但有时也不是全部为了预测,只是为了解释一种现象,因果关系. 还是按照老风格,不说空泛的概念,以实际的案例出发. 还是先前的案例,购房信息,我们这次精简以下,这8位购房者我们只关注薪水和年龄这两个因素,信息如下: 用户ID 年龄 收入 是否买房 1 27 15W 否 2 47 30W 是 3 32 12W 否
R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语
【R笔记】R语言函数总结
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就
R语言笔记完整版
[R笔记]R语言函数总结 R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(
【转】R语言函数总结
原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间
R语言解读一元线性回归模型
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是
[R]R语言里的异常处理与错误控制
之前一直只是在写小程序脚本工具,几乎不会对异常和错误进行控制和处理. 随着脚本结构和逻辑更复杂,脚本输出结果的准确性验证困难,同时已发布脚本的维护也变得困难.所以也开始考虑引入异常处理和测试工具的事情. 不过好像R语言的异常处理似乎有些辣鸡?查了下资料和try的文档说明,感觉说的并不清楚. 在网上查了一些资料,对R语言异常处理做了比较详细的说明,留档作为参考.至于测试工具的问题,后续还是再考虑下. 文章链接:R语言-处理异常值或报错的三个示例 原文参考了以下几个网页: http://stacko
R语言学习笔记:字符串处理
想在R语言中生成一个图形文件的文件名,前缀是fitbit,后面跟上月份,再加上".jpg",先不百度,试了试其它语言的类似语法,没一个可行的: C#中:"fitbit" + month + ".jpg" VB:"fitbit" & month & ".jpg" Haskell:"fitbit" ++ month ++ ".jpg" 还想到concat之
R语言书籍的学习路线图
现在对R感兴趣的人越来越多,很多人都想快速的掌握R语言,然而,由于目前大部分高校都没有开设R语言课程,这就导致很多人不知道如何着手学习R语言. 对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的书籍很多,中文英文都有.那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问.有这种疑问的人
R语言编程艺术# 数据类型向量(vector)
R语言最基本的数据类型-向量(vector) 1.插入向量元素,同一向量中的所有的元素必须是相同的模式(数据类型),如整型.数值型(浮点数).字符型(字符串).逻辑型.复数型等.查看变量的类型可以用typeof(x)函数查询. > #插入向量元素 > x <- c(88,5,12,13) > x [1] 88 5 12 13 > x <- c(x[1:3],168,x[4]) #插入168数字在13之前 > x [1] 88 5 12 168 13 > 2.
数据分析R语言1
数据分析R语言 无意中发现网上的一个数据分析R应用教程,看了几集感觉还不错,本文做一个学习笔记(知识点来源:视频内容+R实战+自己的理解),视频详细的信息请参考http://www.itao521.com/course/34,非常不错的网站,站长的Q群是323370861(这个群的童鞋们都很给力,学习也很上进,各种团购买hadoop,nosql,spark的视频学习),我网站会员ID是515,也欢迎各方朋友交流,OK,开始 统计的一些基础概念,如下图所示, 数据分析常
R语言实战(四)回归
本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来挑选与相应变量相关的解释变量,可以描述两者的关系,也可以生成一个等式,通过解释变量来预测响应变量. 回归分析的各种变体 回归类型 用途 简单线性 用一个量化的解释变量预测一个量化的响应变量 多项式 用一个量化的解释变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性 用两个或多个量化的解释变量预测一个
R语言重要数据集分析研究——R语言数据集的字段含义
R语言数据集的字段含义 作者:马文敏 选择一种数据结构来储存数据 将数据输入或导入到这个数据结构中 数据集的概念 数据集通常是有数据结构的一个矩形数组,行表示规则,列表示变量. 不同的行业对数据集的行和列的叫法不同 统计学家称他们为观测和变量 数据库分析为记录和字段 示例分析者叫他们示例 R语言可以处理的数据类型有很多种包括数据型,字符型,逻辑性,原生性. 2.数据结构 R语拥有很多用于储存数据的对象类型,包括标量,向量,矩阵,数组,数据框和列表. 向量 向量数据必须要有相同的类型和模式的数据,
R语言︱文本(字符串)处理与正则表达式
处理文本是每一种计算机语言都应该具备的功能,但不是每一种语言都侧重于处理文本.R语言是统计的语言,处理文本不是它的强项,perl语言这方面的功能比R不知要强多少倍.幸运的是R语言的可扩展能力很强,DNA/RNA/AA等生物序列现在已经可以使用R来处理. nchar 字符的个数 toupper 转换为大写字符 tolower 转换为小写字符 substr 求字符串的字串 grep 基于正则表达式的匹配 sub 基于正则表达式的替换 strsplit 字符串分割 paste 字符向量连接 match
R语言︱数据分组统计函数族——apply族用法与心得
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:apply族功能强大,实用,可以代替很多循环语句,R语言中不要轻易使用循环语句. 函数名 功能 特点 apply 按行.列运算均值.求和.众数等 简单运算 tapply=table apply 在apply之上加入table功能,可以分组汇总 table结合,可以分组汇总 lapply=list apply 都需要数据框格式,可以与l
R语言与格式、日期格式、格式转化
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言的基础包中提供了两种类型的时间数据,一类是Date日期数据,它不包括时间和时区信息,另一类是POSIXct/POSIXlt类型数据,其中包括了日期.时间和时区信息.基本总结如下: 日期data,存储的是天:时间POSIXct 存储的是秒,POSIXlt 打散,年月日不同:日期-时间=不可运算. 一般来讲,R语言中建立时序数据是通过字符型转
R语言学习 第八篇:常用的数据处理函数
Basic包是R语言预装的开发包,包含了常用的数据处理函数,可以对数据进行简单地清理和转换,也可以在使用其他转换函数之前,对数据进行预处理,必须熟练掌握常用的数据处理函数,本文分享在数据处理时,经常使用的基础函数. 一,合并向量 函数append用于修改合并向量,可以把两个向量合并为一个: append(x, values, after = length(x)) 例如:从一个向量的指定位置处,插入另一个向量: > append(:, :, after = ) [] 二,匹配函数 匹配函数(mat
热门专题
安装oracle客户端和sqlldr
mssql 把多列拼为一个逗号分隔的字符串
查看rpm包的spec
java timer 怎么每天凌晨1点进行定时任务
spss如何根据要求分组连续变量
css实现3d立体效果
C# 遍历所有树形子节点
Sqli-labs靶场通关
d3力导向图节点点击放大
接口文档在没有标明参数类型情况下如何判断是什么格式
无法打开文件openmeshcored
new和init方法参数是共享的吗
asp.net修改密码
linux 关闭ssr服务
java excel 遇到空值
QT自定义按钮如何初始化
mysql在多节的目标代码页中
sqlite3 数据库可以设置访问密码吗
asp.vb web 浏览器 实现下载文件到本地
clion加入自己的头文件和源文件