首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言 求t分布的置信区间
2024-11-05
R-3 t分布--t置信区间--t检验
本节内容: 1:t分布存在的意义是什么 2:t分布的置信区间 3:t分布检验 一.t分布存在的意义是什么 数据分析中有一块很大的版图是属于均值对比的,应用广泛. 例如:对比试验前后病人的症状,证明某种药是否有效: 对比某个班级两次语文成绩,验证是否有提高: 对比某个产品在投放广告前后的销量,看广告是否有效.这些都属于两均值对比的应用. 均值对比的假设检验方法主要有Z检验和T检验: 它们的区别在于Z检验面向总体数据和大样本数据,而T检验适用于小规模抽样样本. 有判断了均值就可以做很多的事情了 二.
用R语言求置信区间
用R语言求置信区间 用R语言求置信区间是很方便的,而且很灵活,至少我觉得比spss好多了. 如果你要求的只是95%的置信度的话,那么用一个很简单的命令就可以实现了 首先,输入da=c(你的数据,用英文逗号分割),然后t.test(da),运行就能得到结果了. 我的数据是newbomb <- c(28,26,33,24,34,-44,27,16,40,-2,29,22,24,21,25,30,23,29,31,19) t.test(newbomb)得到的结果如下 如果要求任意置信度下的置信区间
R语言求根
求根是数值计算的一个基本问题,一般采用的都是迭代算法求解,主要有不动点迭代法.牛顿-拉富生算法.割线法和二分法. 不动点迭代法 所谓的不动点是指x=f(x)的那些点,而所谓的不懂点迭代法是指将原方程化为x=f(x)形式之后,下一步所用的x值为这一步的f(x),这样的话就可以一直逼近我们需 要的x,即方程的根,但是这种方法可能不会收敛到方程的根,随着初始值选定的大小,可能会有发散的情况,因此需要谨慎使用. ###不动点迭代法 func1 <- function(x){return(
常用连续型分布介绍及R语言实现
常用连续型分布介绍及R语言实现 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器.随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长.现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言. 要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领
R语言两种方式求指定日期所在月的天数
R语言两种方式求指定日期所在月的天数 days_monthday<-function(date){ m<-format(date,format="%m") days31<-c("01","03","05","07","08","10","12") days30<-c("04",&
R 语言实现求导
前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了. 不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中.因为R语言我重新学习了高数,让生活中充满数学,生活会变得更有意思. 本节并不是完整的高数计算手册,仅介
R语言实战(四)回归
本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来挑选与相应变量相关的解释变量,可以描述两者的关系,也可以生成一个等式,通过解释变量来预测响应变量. 回归分析的各种变体 回归类型 用途 简单线性 用一个量化的解释变量预测一个量化的响应变量 多项式 用一个量化的解释变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性 用两个或多个量化的解释变量预测一个
R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语
【R笔记】R语言函数总结
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就
R语言笔记完整版
[R笔记]R语言函数总结 R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(
【转】R语言函数总结
原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间
R 语言实战-Part 3 笔记
R 语言实战(第二版) part 3 中级方法 -------------第8章 回归------------------ #概念:用一个或多个自变量(预测变量)来预测因变量(响应变量)的方法 #最常用:OLS--普通最小二乘回归法,包括简单线性回归.多项式回归.多元线性回归 #过程:拟合OLS回归模型-->评价拟合优度-->假设检验-->选择模型 #OLS回归 #目标:减少因变量的真实值和预测值的差值来获得模型参数(截距和斜率),即使得残差平方和最小 #数据需满足:正态性.独立性.线性
R语言——七月
这两个月没有写什么代码.也没做什么大项目,基本就是对以前写的那个用ggplot2可视化数据的项目做一些增增补补,大部分技术难关都在ggplot2和R语言EXCEL处理这里解决并总结了.然后业余帮人修改一个用RVEST写的亚马逊简陋爬虫,花了两个周末时间. 就简单记一下最近弄的这个功能块 功能块分区,并自定义 这个是在处理数据的时候,需要对一批有序数字按照累积的概率进行分组,然后划分分组. 主要用到了两个函数:cumsum(求累积分布),cut(划分区间) 如下面的示例函数getInterval,
R语言解读一元线性回归模型
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是
R语言实战(三)基本图形与基本统计分析
本文对应<R语言实战>第6章:基本图形:第7章:基本统计分析 ================================================================================================================================================== 本章讨论的图形,主要用于分析数据前,对数据的初步掌握.想要对数据有一个初步的印象,最好的方式就是观察它,也就是将数据可视化.在这个过程中,我们
R语言实战(二)数据管理
本文对应<R语言实战>第4章:基本数据管理:第5章:高级数据管理 创建新变量 #建议采用transform()函数 mydata <- transform(mydata, sumx = x1 + x2, meanx = (x1 + x2)/2) 重编码 < 小于 <= 小于或等于 > 大于 >= 大于或等于 == 严格等于(比较浮点类型时慎用,易误判) != 不等于 !x 非x x | y x或y x & y x和y isTRUE(x) x是否为TRUE
数据分析与R语言
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵
R语言各种假设检验实例整理(常用)
一.正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于255小时? 解:按题意,需检验 H0: μ ≤ 225 H1: μ > 225 此问题属于单边检验问题 可以使用R语言t.test t.test(x,y=N
R语言结合概率统计的体系分析---数字特征
现在有一个人,如何对这个人怎么识别这个人?那么就对其存在的特征进行提取,比如,提取其身高,其相貌,其年龄,分析这些特征,从而确定了,这个人就是这个人,我们绝不会认错. 同理,对数据进行分析,也是提取出数据的特征,对其特征进行分析,从而确定这些数据所呈现的信息状况,从而确定了这些数据的独特性和唯一性,因为他呈现的信息是唯一的,绝不与别的是相同的. 那么这些特征是什么呢?拥有哪些特征呢?似乎应该是经过无数科学家的总结,终于发现了几个重要的特征,包括数字特征和分布特征,这个数字特征,包括集中位置,分散
R语言︱贝叶斯网络语言实现及与朴素贝叶斯区别(笔记)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的假设前提有两个第一个为:各特征彼此独立:第二个为且对被解释变量的影响一致,不能进行变量筛选.但是很多情况这一假设是无法做到的,比如解决文本分类时,相邻词的关系.近义词的关系等等.彼此不独立的特征之间的关系没法通过朴素贝叶斯分类器训练得到,同时这种不独立性也给问题的解决方案引入了更多的复杂性[1].
R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言
热门专题
java 8 lamda 按相同属性合并
iOS View相关覆盖,点击事件
模拟器为什么访问不了本地数据接口
前端https 可以访问http
spark sortby 分区有序
flutter text 描边
python进制转换2,8,16进制转换十进制
升级Struts 2.3.37 漏洞
c#datatable插入一列
nsdictionary 删除多余的key、
mysql先删除在插入
phpcms静态路径
CxImage下载教程
qucs 仿真 上拉
在Windows防火墙中注册应用
可撤销并查集 COCI
c# 64位系统x86目标编译平台的内存使用
微信小程序欢迎页面跳转到tab页面
vs2008的属性界面怎么改成中文
UG NX二次开发获取坐标