首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言 添加文本在图外
2024-08-27
R语言 如何为图片添加文字说明(转载)
转载:(中文翻译者)[http://blog.csdn.net/chen790646223/article/details/49766659] (原文链接)[http://datascienceplus.com/adding-text-to-r-plot/ ] 下面介绍了n中为图片添加文字的方法. # 利用layout函数分割屏幕 layout(matrix(c(1,1,2,2), 2, 2, byrow = T), heights = c(4,1)) # 随意画一张图 plot(rnorm(1
R语言绘制相对性关系图
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,
R语言:文本(字符串)处理与正则表达式
R语言:文本(字符串)处理与正则表达式 (2014-03-27 16:40:44) 转载▼ 标签: 教育 分类: R 处理文本是每一种计算机语言都应该具备的功能,但不是每一种语言都侧重于处理文本.R语言是统计的语言,处理文本不是它的强项,perl语言这方面的功能比R不知要强多少倍.幸运的是R语言的可扩展能力很强,DNA/RNA/AA等生物序列现在已经可以使用R来处理. R语言处理文本的能力虽然不强,但适当用用还是可以大幅提高工作效率的,而且有些文本操作还不得不用.高效处理文本少不了正则表达式(r
R语言绘制箱型图
箱形图是数据集中数据分布情况的衡量标准.它将数据集分为三个四分位数.盒形图表示数据集中的最小值,最大值,中值,第一四分位数和第四四分位数. 通过为每个数据集绘制箱形图, 比较数据集中的数据分布也很有用. R中的盒形图通过使用boxplot()函数来创建. 基本公式为: boxplot(x, data, notch, varwidth, names, main) x - 是向量或公式.data - 是数据帧.notch - 是一个逻辑值,设置为TRUE可以画出一个缺口.varwidth - 是一个
R语言中的箱图介绍 boxplot
画箱图的函数: boxplot()##help(boxplot)查询具体用法 图例的解释: 如下图,是两个简单的箱图. 中间的箱子的上下边,分别是第三,一个四分位数. 中间的黑线是第二四分位数(中位数). 设r是变量的四分位距,箱图上方的小横线是小于或等于第三个四分位数+1.5*r的最大观测值.同时下方的小横线是,大于等于第一个四分位数减去1.5*r的最大的观测值. 图中的小白圈,代表很大可能性上是离群点(outlier).(在其他图中也适用) 总结: 箱图给出了大量的信息,不仅
R语言学习 - 箱线图(小提琴图、抖动图、区域散点图)
箱线图 箱线图是能同时反映数据统计量和整体分布,又很漂亮的展示图.在2014年的Nature Method上有2篇Correspondence论述了使用箱线图的好处和一个在线绘制箱线图的工具.就这样都可以发两篇Nature method,没天理,但也说明了箱线图的重要意义. 下面这张图展示了Bar plot.Box plot.Volin plot和Bean plot对数据分布的反应.从Bar plot上只能看到数据标准差或标准误不同:Box plot可以看到数据分布的集中性不同:Violin
R语言绘图:雷达图
使用fmsb包绘制雷达图 library("fmsb") radarfig <- rbind(rep(90, 4), rep(60, 4), c(86.17, 73.96, 82.70, 69.55)) #求平均值 radarfig <- as.data.frame(radarfig) #转化为data.frame colnames(radarfig) <- c("服务方式\n完备度", "在线服务\n成熟度", "办
R语言画云字图
install.packages('wordcloud') library(wordcloud) colors=c('red','blue','green','yellow','purple') data=read.csv("data.csv") wordcloud(data$words, data$freq, scale=c(10,0.5),min.freq=-Inf,max.words=Inf,colors=colors,random.order=F,random.color=F,
R语言 ggplot2 画平滑图
library(splines) library(ggplot2) dt1 <- structure(list(Age = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("o80", "u80"), class = "factor"), NoP = c(47L, 5
R语言︱文本(字符串)处理与正则表达式
处理文本是每一种计算机语言都应该具备的功能,但不是每一种语言都侧重于处理文本.R语言是统计的语言,处理文本不是它的强项,perl语言这方面的功能比R不知要强多少倍.幸运的是R语言的可扩展能力很强,DNA/RNA/AA等生物序列现在已经可以使用R来处理. nchar 字符的个数 toupper 转换为大写字符 tolower 转换为小写字符 substr 求字符串的字串 grep 基于正则表达式的匹配 sub 基于正则表达式的替换 strsplit 字符串分割 paste 字符向量连接 match
R语言︱ 数据库SQL-R连接与SQL语句执行(RODBC、sqldf包)
要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 数据库是极其重要的R语言数据导入源数据之地,读入包有sqldf.RODBC等.跟SQL server相连有RODBC,跟mySQL链接的有RMySQL.但是在R里面,回传文本会出现截断的情况,这一情况可把我弄得有点手足无措. 一.数据库读入--RODBC包 CRAN 里面的包 RODBC 提供了 ODBC的访问接口: odbcConnect
R语言︱情感分析—词典型代码实践(最基础)(一)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:词典型情感分析对词典要求极高,词典中的词语需要人工去选择,但是这样的选择会很有目标以及针对性.本文代码大多来源于<数据挖掘之道>的情感分析章节.本书中还提到了监督算法式的情感分析,可见博客: R语言︱情感分析-基于监督算法R语言实现笔记. 可以与博客 R语言︱词典型情感分析文本操作技巧汇总(打标签.词典与数据匹配等)对着看. 词典型
R语言学习笔记(五)绘图(1)
R是一个惊艳的图形构建平台,这也是R语言的强大之处.本文将分享R语言简单的绘图命令. 本文所使用的数据或者来自R语言自带的数据(mtcars)或者自行创建. 首先,让我们来看一个简单例子: dose <- c(20, 30, 40, 45, 60) drugA <- c(16,20,27,40,60) plot(dose, drugA) 绘制的图形如下: 我们有必要对上述代码做些说明:首句和第二条语句创建两个向量,第三条语句打开一个图形窗口并生成一幅散点图. 这也许是个极为
给社团同学做的R语言爬虫分享
大家好,给大家做一个关于R语言爬虫的分享,很荣幸也有些惭愧,因为我是一个编程菜鸟,社团里有很多优秀的同学经验比我要丰富的多,这次分享是很初级的,适用于没有接触过爬虫且有一些编程基础的同学,内容主要有以下几个方面:背景知识,爬取方法,数据处理和存储以及我学习编程以来的经验和教训. 背景知识一:爬虫是什么 很简单,就是写一套程序,把自己伪装成一个浏览器不断地访问目标网站,批量下载下来上面的信息. 这张图是来自人民大学新闻系的官方公众号-RUC新闻坊,他们就是通过爬虫获取了信息,这些信息经过加工分析后
中文分词实践(基于R语言)
背景:分析用户在世界杯期间讨论最多的话题. 思路:把用户关于世界杯的帖子拉下来.然后做中文分词+词频统计,最后将统计结果简单做个标签云.效果例如以下: 兴许:中文分词是中文信息处理的基础.分词之后.事实上还有特别多有趣的文本挖掘工作能够做.也是个知识发现的过程,以后有机会再学习下. ================================================== * 中文分词经常使用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Sm
R语言图表
条形图 在R语言中创建条形图的基本语法是 barplot(H, xlab, ylab, main, names.arg, col) H是包含在条形图中使用的数值的向量或矩阵 xlab是x轴的标签 ylab是y轴的标签 main是条形图的标题 names.arg是在每个条下出现的名称的向量 col用于向图中的条形提供颜色 组合条形图和堆积条形图 # Create the input vectors. colors <- c("green","orange",
R语言因子
R语言因子 因子是它们用于将数据进行分类并将其存储为级别的数据对象.它们可以同时存储字符串和整数.它们在具有唯一值的有限数目的列是有用的. 例如,"male, "Female" 和 True, False 等. 它们在统计建模的数据分析非常有用. 使用 factor() 函数通过采取向量作为输入来创建因子. 示例 # Create a vector as input. data <- c("East","West","E
R语言与医学统计图形-【16】ggplot2几何对象之标签与文本
ggplot2绘图系统--添加标签与文本.数学表达式.条形图文本.注释 1. 文本与标签添加 geom_label的文本将以标签形式出现,即文本会带有一个背景色. geom_text则是纯文本形式展示. annotaete函数则在图上添加一个注释图层. 文本与标签区别 p <- ggplot(mtcars,aes(wt,mpg,label=rownames(mtcars))) a <- p+geom_text() b <- p+geom_label() gridExtra::grid.a
R语言:用简单的文本处理方法优化我们的读书体验
博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html 前言 延续之前的用R语言读琅琊榜小说,继续讲一下利用R语言做一些简单的文本处理.分词的事情.其实就是继续讲一下用R语言读书的事情啦,讲讲怎么用它里面简单的文本处理方法,来优化我们的读书体验,如果读邮件和读代码也算阅读的话..用的代码超级简单,不涉及其他包 这里讲两个示例,结尾再来吐槽和总结. 1)R-Blogger订阅邮件拆分 2) R代码库快速阅读方法 不在博客园上阅读时才会看到的,这篇博文
第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方反馈的结果和项目需求进行数据分析. "望"的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的.R语言提供了多种图表对数据分布进行描述,本文接下来将逐一讲解. 绘制基本直方图 本例选用如下测试集: 直方图的横轴为绑定变量区间分隔的取值范围,纵轴则表
第四篇:R语言数据可视化之折线图、堆积图、堆积面积图
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_line()便可绘制出基本折线图.R语言示例代码如下: # 基函数 ggplot(BOD, aes(x = Time, y = demand)) + # 折线图函数 geom_line() 运行结果:
热门专题
如何导出从git上下载下来的maven工程到eclipse
c#打印小票for循环打印多行挤在一起了
vmware不能复制窗口内容
cesium 视域分析
david cameron的名言
微服务打包 spring.profiles.active
c# 取消 vshost
mac adb 执行android脚本
swagger_swagger生成本地js调用
date 获取多少秒之前的数据
mac版axure rp9 license
scoop库运行原理
python webservice服务端
arcmap提取一块影像
被认可的开发者的应用程序mac
-i指定hosts文件
set erase函数的时间复杂度
makefile windows 语法规则
ComboBox控件的常用方法
unity meshrender materials赋值失败