首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
r语言 箱图怎么解释
2024-09-03
R语言中的箱图介绍 boxplot
画箱图的函数: boxplot()##help(boxplot)查询具体用法 图例的解释: 如下图,是两个简单的箱图. 中间的箱子的上下边,分别是第三,一个四分位数. 中间的黑线是第二四分位数(中位数). 设r是变量的四分位距,箱图上方的小横线是小于或等于第三个四分位数+1.5*r的最大观测值.同时下方的小横线是,大于等于第一个四分位数减去1.5*r的最大的观测值. 图中的小白圈,代表很大可能性上是离群点(outlier).(在其他图中也适用) 总结: 箱图给出了大量的信息,不仅
R语言-箱型图&热力图
1.箱型图 boxplot()函数 > metals<-read.csv("metals.csv",header=TRUE) #读取文件和列名 > boxplot(metals, #数据集 + xlab="Metals", #设置X轴标题 + ylab="Atmospheric Concentration in ng per cubic metre", #设置Y轴标题 + main="Atmospheric Metal
R语言---热图的制作
>install.packages("gplots") > library("gplots")> p <- data.frame(read.table("test.txt",header = T, sep="\t"))> row.names(p) <- p$gene> p <- p[,2:21]> p_matrix<- data.matrix(p) > heat
R语言-时间序列图
1.时间序列图 plot()函数 > air<-read.csv("openair.csv") > plot(air$nox~as.Date(air$date,"%d/%m/%Y %H:%M"), #把年月日时分秒转换成日期格式 + type="l", + xlab="Time", ylab="Concentration (ppb)", + main="Time trend of
R语言-线图(二)
1.线图示例 plot()为高水平作图命令,axis().lines().legend()都为低水平作图命令 > rain<-read.csv("cityrain.csv") > plot(rain$Tokyo,type="b",lwd=2, #type ="b"表示即画散点也画直线,lwd设置线宽 + xaxt="n",ylim=c(0,300),col="black", #xaxt
大数据平台R语言web UI应用架构 设计与开发
1. 系统拓扑图 在日常业务分析中,R是非常常用的分析工具,而当数据量较大时,用R语言需要需用更多的时间来完成训练模型,spark作为大规模数据处理框架,采用内存计算,可以短时间内完成大量的数据的处理及计算模型,但缺点是不能图形展示,R语言的sparkly则提供了R语言和Spark的接口,实现了在数据量大的情况下,应用Spark的快速数据分析和处理能力结合R语言的图形化展示功能,方便业务分析,模型训练. 但是要想使多人同时共享R和Spark,还需要其他的相关组件,下图展示了所有相关的组件及应用:
[3]R语言在数据处理上的禀赋——par参数详解(一)
本文目录 公共参数列表 par 颜色相关 字体相关 字体大小相关 线条相关 符号相关 线条和符号大小相关 结束 本文首发:program-dog.blogspot.com 注1:本文也曾在csdn发布,不过无法忍受csdn超长时间的审核,迁移到博客圆了. 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可. 这一篇介绍par参数比较基础的几个参数用法,涉及颜色,字体,线条和符号,坐标轴,添加图例,组合做图留到下一篇文章. 上一篇文章已经详细的介绍了R语言可视化技术的
数据攻略●R语言自述
(注明:以下文章均在Linux操作系统下执行) 一.R语言简介 R语言是用于统计分析,图形表示和报告的编程语言和软件环境.R语言由Ross Ihaka和Robert Gentleman在新西兰奥克兰大学创建,目前由R语言开发核心团队开发. R语言的核心是解释计算机语言,其允许分支和循环以及使用函数的模块化编程.R语言允许与以C,C ++,.Net,Python或FORTRAN语言编写的过程集成以提高效率. R语言在GNU通用公共许可证下免费提供,并为各种操作系统(如Linux,Windows和M
Mac下R语言环境搭建
Mac下R语言环境搭建 博主在数据分析的时候一直用的python(MATLAB太重了),最近跟其他搞学术的人合作,需要用一下R语言,所以也打算顺便学习一下R. R语言简介 R语言是用于统计分析,图形表示和报告的编程语言和软件环境. R语言由Ross Ihaka和Robert Gentleman在新西兰奥克兰大学创建,目前由R语言开发核心团队开发. R语言的核心是解释计算机语言,其允许分支和循环以及使用函数的模块化编程. R语言允许与以C,C ++,.Net,Python或FORTRAN语言编写的
R语言简单介绍
R语言 概述 R语言是用于统计分析,图形表示和报告的编程语言和软件环境. R语言由Ross Ihaka和Robert Gentleman在新西兰奥克兰大学创建,目前由R语言开发核心团队开发. R语言的核心是解释计算机语言,其允许分支和循环以及使用函数的模块化编程. R语言允许与以C,C ++,.Net,Python或FORTRAN语言编写的过程集成以提高效率. R语言在GNU通用公共许可证下免费提供,并为各种操作系统(如Linux,Windows和Mac)提供预编译的二进制版本. R是一个在GN
第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方反馈的结果和项目需求进行数据分析. "望"的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的.R语言提供了多种图表对数据分布进行描述,本文接下来将逐一讲解. 绘制基本直方图 本例选用如下测试集: 直方图的横轴为绑定变量区间分隔的取值范围,纵轴则表
第四篇:R语言数据可视化之折线图、堆积图、堆积面积图
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_line()便可绘制出基本折线图.R语言示例代码如下: # 基函数 ggplot(BOD, aes(x = Time, y = demand)) + # 折线图函数 geom_line() 运行结果:
R语言︱噪声数据处理、数据分组——分箱法(离散化、等级化)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 分箱法在实际案例操作过程中较为常见,能够将一些数据离散化,等级化,比如年龄段,我们并不想知道确切的几岁,于是乎可以将其分组.分段. 基础函数中cut能够进行简单分组,并且可以用于等宽分箱法. cut函数:cut(x, n):将连续型变量x分割为有着n个水平的因子.(参考来自: R语言︱数据集分组.筛选) [plain] view plain c
R语言绘制QQ图
无论是直方图还是经验分布图,要从比较上鉴别样本是否处近似于某种类型的分布是困难的 QQ图可以帮我们鉴别样本的分布是否近似于某种类型的分布 R语言,代码如下: > qqnorm(w);qqline(w)> w <- c(75.0, 64.0, 47.4, 66.9, 62.2, 62.2, 58.7, 63.5,+ 66.6, 64.0, 57.0, 69.0, 56.9, 50.0, 72.0)> qqnorm(w);qqline(w)
R语言画棒状图(bar chart)和误差棒(error bar)
假设我们现在有CC,CG,GG三种基因型及三种基因型对应的表型,我们现在想要画出不同的基因型对应表型的棒状图及误差棒.整个命令最重要的就是最后一句了,用arrows函数画误差棒.用到的R语言如下: data<-read.csv("E:/model/data.csv",sep=" ",header=T)#导入数据data mean_CC<-mean(data[,1])#计算CC基因型对应的表型的平均值 mean_GG<-mean(data[,2])
R语言-画线图
R语言分高水平作图函数和低水平作图函数 高水平作图函数:可以独立绘图,例如plot() 低水平作图函数:必须先运行高水平作图函数绘图,然后再加画在已有的图上面 第一种方法:plot()函数 > sales<-read.csv("dailysales.csv", header=TRUE) #读取文件和列名 > plot(sales$units~as.Date(sales$date,"%d/%m/%y"), #修改日期格式 + type="l
R语言绘制花瓣图flower plot
R语言中有很多现成的R包,可以绘制venn图,但是最多支持5组,当组别数大于5时,venn图即使能够画出来,看上去也非常复杂,不够直观: 在实际的数据分析中,组别大于5的情况还是经常遇到的,这是就可以考虑用花瓣图来进行数据的可视化 比如下面这个例子: 来源于该链接 https://www.researchgate.net/figure/235681265_fig3_The-pan-genome-of-Sinorhizobium-The-flower-plots-and-Venn-diagram
R语言绘制相对性关系图
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,
R语言之脸谱图
脸谱图和星图类似,但它却比星图可以表示更多的数据维度.用脸谱来分析多维度数据,即将P个维度的数据用人脸部位的形状或大小来表征.脸谱图在平面上能够形象的表示多维度数据并给人以直观的印象,可帮助使用者形象记忆分析结果,提高判断能力,加快分析速度.目前已应用于多地域经济战略指标数据分析,空间数据可视化等领域. 脸谱图一般采用15个指标,各指标代表的面部特征为: 1 脸的高度 2脸的宽度3 脸型4嘴巴厚度 5, 嘴巴宽度6 微笑7 眼睛的高度8 眼睛宽度 9 头发长度 10 头发宽度11头发风格12
一幅图解决R语言绘制图例的各种问题
一幅图解决R语言绘制图例的各种问题 用R语言画图的小伙伴们有木有这样的感受,"命令写的很完整,运行没有报错,可图例藏哪去了?""图画的很美,怎么总是图例不协调?""啊~~啊,抓狂,图例盖住关键的点了.""怎么才能让图例指哪站哪?" "图例太长怎么办"-- 吐槽吐到累,不如多掌握几个图例(Legend)的软肋,更好地利用R语言绘图. legend(x, y = NULL, legend, fill = NUL
热门专题
hive mapjoin内存溢出
rtsp在html打开
fsmc占用的是什么内存
centos7搭建elk集群
alpine自带的用户
opengl3D太阳系绘制
InitializingBean接口的使用场景
sourcetree 代理账号密码设置
calico vxlan没有tunl0
laravel 获取数据库某一个值
rndis驱动导致主机crash的问题分析
jQuery 动态添加表格空行
微信支付获取openid怎么传参
docker 无法删除mysql镜像
双边滤波matlab
Android 编程 界面响应
iframe嵌套缓存无法清空
unityapi使用wasd控制摄像机移动
ef Include 单层
unity 修改默认的c# 编辑器