首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
R语言 igraph 计算度
2024-09-07
R语言︱SNA-社会关系网络—igraph包(中心度、中心势)(二)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- SNA社会关系网络分析中,关键的就是通过一些指标的衡量来评价网络结构稳定性.集中趋势等.主要有中心度以及中心势两大类指标. 以下的代码都是igraph包中的. ---------------------------------------------------- 中心度指标的对比 指标名称 概念 比较 实际应用 点度中心度 在某个点上,有多少
R语言igraph 包-构建网络图
igaph 是一个项目,目标是建立一条简单,易用的网络分析工具,有 R, python, C/C++ 等语言的具体实现: 项目主页: http://igraph.org/ 在R语言中,对应的就是 igraph 这个R包 安装: install.packages("igraph") 使用: 对于图 graph 这种数据结构而言,最基本的元素包括节点(node) 和 边(节点之间的连线,edge); igraph 这个R包提供了很多种创建graph的方式,我们先看一个最基本的例子,从数据框
R语言构建蛋白质网络并实现GN算法
目录 R语言构建蛋白质网络并实现GN算法 1.蛋白质网络的构建 2.生物网络的模块发现方法 3.模块发现方法实现和图形展示 4.附录:igraph中常用函数 参考链接 R语言构建蛋白质网络并实现GN算法 1.蛋白质网络的构建 我们使用与人类HIV相关的蛋白质互作数据hunam-HIV PPI.csv来构建这个蛋白质互作网络. 在R中,我们可以从存储在R环境外部的文件读取数据.还可以将数据写入由操作系统存储和访问的文件. R可以读取和写入各种文件格式,如:csv,excel,xml等. 想要读取c
R语言︱SNA-社会关系网络—igraph包(社群划分、画图)(三)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 社群划分跟聚类差不多,参照<R语言与网站分析>第九章,社群结构特点:社群内边密度要高于社群间边密度,社群内部连接相对紧密,各个社群之间连接相对稀疏. 社群发现有五种模型:点连接.随机游走.自旋玻璃.中间中心度.标签发现. 评价社群三个指标:模块化指标Q.网络聚类系数.网络密度. 画图有三种方法:直接plot.书中自编译函数.SVG. ----
【计理05组01号】R 语言基础入门
R 语言基本数据结构 首先让我们先进入 R 环境下: sudo R 赋值 R 中可以用 = 或者 <- 来进行赋值 ,<- 的快捷键是 alt + - . > a <- c(2,5,8) > a [1] 2 5 8 筛选 我们可以用下标来筛选,例如: > a[1:2] [1] 2 5 注意 R 语言的下标是从 1 开始的. 当然我们也可以用逻辑进行筛选,例如: > a[a>4] [1] 5 8 为了了解这个式子的原理,我们先看看 a>4 是什么: &g
R包igraph探究
前段时候由于项目的原因,需要画图,然后开始接触R语言的igraph包,网上零零散散的搜罗了不少的信息,放在这边交流分享的同时也给自己留个备份吧~ 1.首先是读取文件,基本选用的都是csv文件 edge1<-read.csv("D:/9th_smj/onetimecut.csv",header=F) vertex3<-read.csv("D:/9th_smj/vertex.csv",header=F) 2.设置变量的格式 edge1[,1]=as.char
主成分分析(PCA)原理及R语言实现
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个
R语言各种假设检验实例整理(常用)
一.正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于255小时? 解:按题意,需检验 H0: μ ≤ 225 H1: μ > 225 此问题属于单边检验问题 可以使用R语言t.test t.test(x,y=N
R语言︱贝叶斯网络语言实现及与朴素贝叶斯区别(笔记)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的假设前提有两个第一个为:各特征彼此独立:第二个为且对被解释变量的影响一致,不能进行变量筛选.但是很多情况这一假设是无法做到的,比如解决文本分类时,相邻词的关系.近义词的关系等等.彼此不独立的特征之间的关系没法通过朴素贝叶斯分类器训练得到,同时这种不独立性也给问题的解决方案引入了更多的复杂性[1].
R语言︱SNA-社会关系网络 R语言实现专题(基础篇)(一)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:这里所有的应用代码都来自与igraph包.<R语言与网站分析>书中第九章关系网络分析把大致的框架已经描述得够清楚,但是还有一些细节需要完善,而且该书笔者没找到代码... ---------------------------------------- 一.关系网络数据类型 关系网络需要什么样子的数据呢? 笔者接触到了两种数据结
R语言︱情感分析—基于监督算法R语言实现(二)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:本文大多内容来自未出版的<数据挖掘之道>的情感分析章节.本书中总结情感分析算法主要分为两种:词典型+监督算法型. 监督算法型主要分别以下几个步骤: 构建训练+测试集+特征提取(TFIDF指标)+算法模型+K层交叉验证.可与博客对着看:R语言︱词典型情感分析文本操作技巧汇总(打标签.词典与数据匹配等) ----------------
[R] R语言for循环机制
在做数据分段截取的时候,发现for循环的表现和其他语言不太一样. 上代码: :) { i = i + print(i) } 结果: [] [] [] [] 即作为循环计次的i, 并不会因为在循环体中的赋值变化而变化. 在Python中查看也是一样的结果. 怀疑是动态语言在生成for循环的时候, 会提前生成循环列表的下标列表, 避免在循环中对下标做操作后,导致循环结果不稳定. 同时还避免了每次循环会重新计算长度表达式的问题. 如 for x in len(str), 在Java中,每一次循环都会执
主成分分析(PCA)原理及R语言实现 | dimension reduction降维
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题.学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单. 2019年04月25日 不该先说covariacne matrix协方差矩阵的,此乃后话,先从直觉理解PCA.先看一个数据实例,明显的两个维度之间有一个相关性,大部分的方差可以被斜对角的维度解释,少数的noise则被虚线解
R语言︱处理缺失数据&&异常值检验、离群点分析、异常值处理
在数据挖掘的过程中,数据预处理占到了整个过程的60% 脏数据:指一般不符合要求,以及不能直接进行相应分析的数据 脏数据包括:缺失值.异常值.不一致的值.重复数据及含有特殊符号(如#.¥.*)的数据 数据清洗:删除原始数据集中的无关数据.重复数据.平滑噪声数据.处理缺失值.异常值等 缺失值处理:删除记录.数据插补和不处理 主要用到VIM和mice包 install.packages(c("VIM","mice")) 1.处理缺失值的步骤 步骤: (1)识别缺失数据:
使用 R 语言挖掘 QQ 群聊天记录
1.获取数据 从 QQ 消息管理器中导出消息记录,保存的文本类型选择 txt 文件.这里获取的是某群从 2016-04-18 到 2016-05-07 期间的聊天记录,记录样本如下所示. 消息记录(此消息记录为文本格式,不支持重新导入) ================================================================ 消息分组:我的QQ群 =======================================================
R语言中常用包(二)
数据导入 以下R包主要用于数据导入和保存数据 feather:一种快速,轻量级的文件格式.在R和python上都可使用readr:实现表格数据的快速导入.中文介绍可参考这里readxl:读取Microsoft Excel电子表格数据openxlsx:读取Microsoft Excel电子表格数据googlesheets:读取google电子表格数据haven:读取SAS,SPSS和Stata统计软件格式的数据httr:从网站开放的API中读取数据rvest:网页数据抓取包xml2:读取HTML和
基于R语言的结构方程:lavaan简明教程 [中文翻译版]
lavaan简明教程 [中文翻译版] 译者注:此文档原作者为比利时Ghent大学的Yves Rosseel博士,lavaan亦为其开发,完全开源.免费.我在学习的时候顺手翻译了一下,向Yves的开源精神致敬.此翻译因偷懒部分删减,但也有增加,有错误请留言 「转载请注明出处」 目录 lavaan简明教程 [中文翻译版] 目录 摘要 在开始之前 安装lavaan包 模型语法 例1:验证性因子分析(CFA) 例2:结构方程(SEM) 更多关于语法的内容 6.1 固定参数 6.2 初值 6.3 参数标签
R语言实战(十)处理缺失数据的高级方法
本文对应<R语言实战>第15章:处理缺失数据的高级方法 本文仅在书的基础上进行简单阐述,更加详细的缺失数据问题研究将会单独写一篇文章. 处理缺失值的一般步骤: 识别缺失数据: 检查导致数据缺失的原因: 删除包含缺失值的实例或用合理的数值代替(插补)缺失值. 缺失数据的分类: 完全随机缺失(MCAR):某变量的缺失数据与其他任何观测或未观测的变量都不相关: 随机缺失(MAR):某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关: 非随机缺失(NMAR):不属于MCAR或MAR的变量.
R语言实战(九)主成分和因子分析
本文对应<R语言实战>第14章:主成分和因子分析 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量成为主成分. 探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法.通过寻找一组更小的.潜在的或隐藏的结构来解释已观测到的.显式的变量间的关系. 这两种方法都需要大样本来支撑稳定的结果,但是多大是足够的也是一个复杂的问题.目前,数据分析师常使用经验法则:因子分析需要5~10倍于变量数的样本数.另外有研究表明,所需样本量依赖于因子数目.与
r语言 包说明
[在实际工作中,每个数据科学项目各不相同,但基本都遵循一定的通用流程.具体如下] [下面列出每个步骤最有用的一些R包] 1.数据导入以下R包主要用于数据导入和保存数据:feather:一种快速,轻量级的文件格式:在R和python上都可使用readr:实现表格数据的快速导入readxl:读取Microsoft Excel电子表格数据openxlsx:读取Microsoft Excel电子表格数据googlesheets:读取google电子表格数据haven:读取SAS,SPSS和Stata
R语言中文社区历史文章整理(类型篇)
R语言中文社区历史文章整理(类型篇) R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形
热门专题
sql server timestamp转date
linux设置最大文件打开数量
百度翻译批量翻译长句子,不受限制,反爬取代码实现python
mysql decimal insert 数值截取
mysql 大于会走索引吗
ESXI的custom dns suffixes
python函数分为内置函数和匿名函数
strongswan搭建
控制传输和批量传输哪个好
为什么调用函数print会增加一个换行符
iOS log日志分析
微信小程序socket断开怎么重新连接
delphi CXtreeview动态添加节点
qt3D模型 什么格式
修改svn项目变为普通项目
小程序picker 多列选择 显示 object
clion编译opencv
浦发银行Ukey无证书
数据库删除两个表中有关联的数据
windos自带输入法dota2输入法